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STL: A Seasonal-Trend Decomposition
Procedure Based on Loess
Robert B. Cleveland,” William S. Cleveland,? Jean E. McRae,’ and Irma Terpenning’

Abstract: STL is a filtering procedure for
decomposing a time series into trend,
seasonal, and remainder components.
STL has a simple design that consists of
a sequence of applications of the loess
smoother; the simplicity allows analysis of
the properties of the procedure and allows

fast computation, even for very long time.

series and large amounts of trend and
seasonal smoothing. Other features of STL
are specification of amounts of seasonal and
trend smoothing that range, in a nearly con-

1. Introduction

STL is a filtering procedure for decompos-
ing a seasonal time series into three com-
ponents: trend, seasonal, and remainder.
Figure 1 shows an example. The data,
graphed in the first (top) panel, are daily
average measurements of atmospheric
carbon dioxide (CO,) made at the Mauna
Loa Observatory in Hawaii (Komhyr and
Harris 1977). The second panel graphs a
trend component: the low frequency vari-
ation in the data together with nonstation-
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tinuous way, from a very small amount of
smoothing to a very large amount; robust
estimates of the trend and seasonal com-
ponents that are not distorted by aberrant
behavior in the data; specification of the
period of the seasonal component to any
integer multiple of the time sampling inter- .
val greater than one; and the ability to
decompose time series with missing values.

Key words: Seasonal adjustment; time series;
loess.

ary, long-term changes in level. The third
panel graphs a seasonal component: vari-
ation in the data at or near the seasonal
frequency, which in this case is one cycle per
year. The remainder component, shown in
the fourth panel, is the remaining variation
in the data beyond that in the seasonal and
trend components. That is, suppose the
data, the trend component, the seasonal
component, and the remainder component
are denoted by Y,, T,, S,, and R,, respect-
ively, for v = 1 to N. Then

Y, = T,+ S, + R,.

The measurements in Figure 1 were made
by the U.S. National Oceanic and Atmos-
pheric Administration, or NOAA, as part of
a worldwide government program to moni-
tor CO, concentrations. The measurements
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Fig. 1. Decomposition Plot of Daily Carbon Dioxide Data. The units on the vertical scales

are ppm.

span the period April 17, 1974 to December
31, 1986. We deleted all occurrences of
February 29, as if that day did not exist, to
keep the period equal to 365 days; thus the

data, with these days deleted, span 4609
days. Data are missing for 416 of these
days, so altogether there are 4193 CO,
measurements.
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1.1. Design goals

Our goal for STL was to develop a decom-
position procedure and a companion com-
puter implementation that satisfy the
following interdependent criteria:

1. Simple design and straightforward use.

2. Flexibility in specifying the amounts
of variation in the trend and seasonal
components.

3. Specification of the number of obser-
vations per cycle of the seasonal com-
ponent to any integer greater than 1.

4. The ability to decompose series with
missing values.

5. Robust trend and seasonal components
that are not distorted by transient,
aberrant behavior in the data.

6. Easy computer implementation and fast
computation, even for long time series.

STL consists of a sequence of smoothing
operations each of which, with one excep-
tion, employs the same smoother: locally-
weighted regression, or loess (Cleveland and
Grosse 1990; Cleveland and Devlin 1988;
Cleveland, Devlin, and Grosse 1988). In
Section 2, loess is described and then the
operations that make up STL are given.

STL has several parameters that must be
chosen by the data analyst. Section 3 dis-
cusses how to choose them. For some par-
ameters, a priori prescribed values can be
used. The choices of the others must be
based on the properties of the data; diagnos-
tic methods are given that help the data
analyst to make these choices.

Computation is a critical issue. To achieve
the widest possible applicability, computer
routines that implement a seasonal-trend
decomposition procedure must run fast,
even for long time series such as that in
Figure 1, and should have a simple, modular
structure. Implementation of STL is dis-
cussed in Section 4.

The design of STL and the choices of
parameters in practice are based on an
understanding of which part of the variation
in a time series becomes the seasonal com-
ponent and which part becomes the trend
component. This understanding comes from
eigenvalue and frequency response analyses
in Section 5.

Section 6 is a general discussion of the
following topics: a summary of the choice of
the STL parameters in practice; a review of
the salient features of STL; two examples
(multiplicative decomposition and trading-
day components) that illustrate how the
design of STL leads to easy modification to
achieve other goals; combining STL with a
time series model to get confidence intervals
for components; a comparison with X-11
(Shiskin, Young, and Musgrave 1967); and
information on how to acquire public-
domain Fortran routines that implement
STL.

2. The Definition of STL

In this section we will describe the loess
smoother and the STL operations. Our goal
is to give a straightforward account of the
details; the justification for various aspects
is given in later sections.

2.1. Loess

Suppose x; and y, for i = 1 to n are measure-
ments of an independent and dependent
variable, respectively. The loess regression
curve, g(x), is a smoothing of y given x that
can be computed for any value x along the
scale of the independent variable. That is,
loess is defined everywhere and not just at
the x;; as we shall see, this is an important
feature that in STL will allow us to deal with
missing values and detrend the seasonal
component in a straightforward way. Actu-
ally, loess can be used to smooth y as a



function of any number of independent

variables, but for STL, only the case of one

independent variable is needed.

g(x) is computed in the following way.
A positive integer, ¢, is chosen. For the
moment suppose g < n. The ¢ values of the
x; that are closest to x are selected and each
is given a neighborhood weight based on its
distance from x. Let A, (x) be the distance of
the gth farthest x; from x. Let W be the
tricube weight function:

(1 —-4) for0<u<1

W) =
0 foru > 1.

The neighborhood weight for any x; is

o = (5 )

Thus the x; close to x have the largest
weights; the weights decrease as the x;
increase in distance from x and become zero
at the gth farthest point. The next step is to
fit a polynomial of degree d to the data with
weight v,(x) at (x;, y;). The value of the
locally-fitted polynomial at x is g(x). In this
paper we will use d = 1 or 2; that is, the
fitting is locally-linear or locally-quadratic.

Now suppose that g > n. A,(x) is the
distance from x to the farthest x;,. Forqg > n
we define A, (x) by

d(x) = Ao(x) %.

Then we proceed as before in the definition

of the neighborhood weights using this

value of A,(x).

To use loess, d and ¢ must, of course, be
chosen. The choices, in the context of STL,
will be discussed in detail in this section and
in Section 3. As ¢ increases, §(x) becomes
smoother. As ¢ tends to infinity, the v,(x)
tend to one and g(x) tends to an ordinary
least-squares polynomial fit of degree d.
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Taking d = 1 is reasonable if the underlying
pattern in the data has gentle curvature. But
if the pattern has substantial curvature, for
example, peaks and valleys, thend = 2isa
better choice.

Suppose each observation (x;, y;) has a
weight p; that expresses the reliability of
the observation relative to the others. For
example, if the y, had variances o’k; where
the k; were known, then p, might be 1/k;. We
can incorporate these weights into the loess
smoothing in a straightforward way by
using p,v;(x) as the weights in the local least-
squares fitting. As we will see, this provides
a mechanism by which we can easily build
robustness into STL.

2.2. The overall design: inner and outer
loops

STL consists of two recursive procedures:
an inner loop nested inside an outer loop. In
each of the passes through the inner loop,
the seasonal and trend components are
updated once; each complete run of the
inner loop consists of 7, such passes. Each
pass of the outer loop consists of the inner
loop followed by a computation of robust-
ness weights; these weights are used in the
next run of the inner loop to reduce the
influence of transient, aberrant behavior
on the trend and seasonal components. An
initial pass of the outer loop is carried out
with all robustness weights equal to 1, and
then n, passes of the outer loop are carried
out. The choices of n;, and n, are discussed
in Section 3. For the decomposition in
Figure 1, n; = 1 and n, = 10.

Suppose the number of observations in
each period, or cycle, of the seasonal com-
ponent is n,,. For example, if the series is
monthly with a yearly periodicity, then
n,, = 12. We need to be able to refer to the
subseries of values at each position of the

-



Cleveland et al.: STL: A Seasonal-Trend Decomposition Procedure Based on Loess 7

seasonal cycle. For example, for a monthly
series with n,) = 12, the first subseries is the
January values, the second is the February
values, and so forth. We will refer to each of
these n, subseries as cycle-subseries.

2.3 The inner loop

Each pass of the inner loop consists of
a seasonal smoothing that updates the
seasonal component, followed by a trend
smoothing that updates the trend com-
ponent. Suppose S¥ and T¥ forv = 1to N
are the seasonal and trend components at
the end of the kth pass; these two com-
ponents are defined at all timesv = 1to N,
even at times where Y, is missing. The
updates of the (k + 1)st step, S¥*" and
T*+Y  are computed in the following way.

Step 1: Detrending. A detrended series,
Y, — T®,is computed. If Y, is missing at a
particular time position, then the detrended
series is also missing at that position.

Step 2: Cycle-subseries Smoothing. Each
cycle-subseries of the detrended series is
smoothed by loess with g = n,andd = 1.
Smoothed values are computed at all time
positions of the cycle-subseries, including
those with missing values, and at the pos-
itions just prior to the first time position of
the subseries and just after the last. For
example, suppose the series is monthly,
n, = 12, and the January cycle-subseries
ranges from January 1943 to January 1985
with a missing value at January 1960; then
the smoothed values are computed at all
positions from January 1942 to January
1986. The collection of smoothed values for
all of the cycle-subseries is a temporary
seasonal series, C**", consisting of N +
2n,,, values that range fromv = —n, + 1
to N + ny,. For the decomposition shown
in Figure 1, n,, = 35. The choice of n, will
be discussed in Sections 3 and 5.

Step 3: Low-Pass Filtering of Smoothed
Cycle-Subseries. A low-pass filter is applied
to C*V, The filter consists of a moving
average of length n,, followed by another
moving average of length n,,, followed
by a moving average of length 3, followed
by a loess smoothing with d = 1 and ¢ =
ng,. The choice of n;, will be discussed in
Sections 3 and 5. For the decomposition in
Figure 1, n;, = 365. The output, L¥*", is
defined at time positions v = 1 to N because
the three moving averages cannot extend to
the ends; n, positions are lost at each
end. The seasonal smoothing in Step 2 was
extended 7, positions at each end in anti-
cipation of this loss.

Step 4: Detrending of Smoothed Cycle-
Subseries. The seasonal component from the
(k + Dst loop is S¥*V = C¥+D) — [¥+D
for v = 1 to N. L¥*V is subtracted to pre-
vent low-frequency power from entering the
seasonal component.

Step 5: Deseasonalizing. A deseasonalized
series ¥, — S%*Vis computed. If Y, is miss-
ing at a particular time position, then the
deseasonalized series is also missing.

Step 6: Trend Smoothing. The deseasonalized
series is smoothed by loess with ¢ = n,, and
d = 1.Smoothed values are computed at all
time positions v = 1 to N, even those with
missing values. The trend component from
the (k + 1)stloop, TV forv = 1to N, is
this set of smoothed values. For the decom-
position in Figure 1, n,, = 573. The choice
of n, will be discussed in Section 3 and 5.

Thus the seasonal-smoothing portion of the
inner loop is Steps 2, 3, and 4, and the
trend-smoothing portion is Step 6.

To carry out Step 1 on the initial pass
through the inner loop we need starting
values, 79, for the trend component.
Using T\” = 0 works quite well. The
trend becomes part of the smoothed cycle-



subseries, C", but is largely removed in
Step 4, the detrending.

2.4. The outer loop

Suppose we have carried out an initial run
of the inner loop to get estimates, 7, and S,,,
of the trend and seasonal components. Then
the remainder is

R, = Y,—T,—5,.

(Note that the remainder, unlike 7, and S,,
is not defined where Y, has missing values.)
We will define a weight for each time point
where Y, is observed. These robustness
weights reflect how extreme R, is. An outlier
in the data that results in a very large |R,|
will have a small or zero weight. Let

h = 6 median(|R,]).

Then the robustness weight at time point v
is

P, = B(R,|h)

where B is the bisquare weight function:

(1 —)P? forO0<u<1
Bu) =
0 foru > 1.

Now the inner loop is repeated, but in the
smoothings of Steps 2 and 6, the neighbor-
hood weight for a value at time v is multi-
plied by the robustness weight, p,. This is
just a use of the reliability weights discussed
in Section 2.1. These robustness iterations of
the outer loop are carried out a total of n,
times. Each time we enter the inner loop
after the initial pass we do not set 7¥ = 0
as we did on the initial pass, but rather use
the trend component from Step 6 of the
previous inner loop.

2.5. Post-smoothing of the seasonal

Consider the daily CO, series in Figure 1.
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Step 2 of STL, the basic one in the forma-
tion of the seasonal component, has the
following form: the 365 cycle-subseries of
the detrended series are smoothed separately
and then are put together to form the tem-
porary seasonal component. This means
that each cycle-subseries of the seasonal will
be smooth across years. For example, the
values of the seasonal component for July 4
change smoothly from one year to the next.
But the smoothing does not guarantee that
the seasonal component from one day to the
next will be smooth. Such smoothness is not
imposed because there are many time series
for which it is inappropriate. The top panel
of Figure 2 shows the seasonal component
of the daily CO, series that results from
STL; there is clearly local roughness. But for
this series we want a component that is
smooth from one day to the next.

A simple solution to a locally-rough
seasonal is a post-smoothing in which the
seasonal component from STL is smoothed
by loess. The smoothed values are the final
seasonal component. In carrying out this
smoothing we want to be sure to use locally-
quadratic fitting because there are many
peaks and valleys in the seasonal com-
ponent. Also, there is no need for robustness
iterations in loess since STL produces a
well-behaved component apart from the
local roughness. Finally, ¢ can typically be
small or moderate since the roughness will
typically have a small variance. For the
daily CO, data, g was taken to be 51 for the
post-smoothing. The resulting seasonal
component is shown in the bottom panel of
Figure 2; this is the component shown in
Figure 1.

3. Choosing the STL Parameters
STL has 6 parameters:

n, = the number of observations

-
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CO2 (ppm)
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1980
Year

1982 1984 1986

CO2 (ppm)
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Fig. 2.

1980
Year

(Top Panel) Seasonal Component of Daily Carbon Dioxide. (Bottom Panel)

1982 1984 1986

Seasonal Component After Post-Smoothing. The units on the vertical scales are ppm.

in each cycle of the seasonal
component,

ns = the number of passes through
the inner loop,

n, = the number of robustness
iterations of the outer loop,

ng = the smoothing parameter for
the low-pass filter,

n, = the smoothing parameter for
the trend component,

and
n, = the smoothing parameter for the

seasonal component.

Choosing the first five is straightforward.

The last parameter, n,, however, must be
carefully tailored to each application; we
provide some diagnostic methods to help do
this. In this section we discuss the choices.

3.1. Scripps CO, and unemployed males

We will use two time series as examples in
this section. The first is monthly averages of
measurements of atmospheric CO, made at
the Mauna Loa Observatory in Hawaii by
the Scripps Institute of Oceanography
(Keeling, Bacastow, and Whorf 1982). The
decomposition plot in Figure 3 shows the
data and three components. The time frame
of the data ranges from January 1959 to
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December 1987; this was all of the data the time our analysis was carried out. There
available from our source, the Carbon is a yearly periodicity so n, = 12. The
Dioxide Information Analysis Center of other parameters of the decomposition are
the Oak Ridge National Laboratory, at ng, = 2, n, = 0, ng, = 13, n,, = 19, and
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Cycle-Subseries
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Fig. 4. Cycle-Subseries Plot for Monthly Carbon Dioxide Data. The units on the vertical

scale are ppm.

ny, = 35. Figure 4 is a cycle-subseries piot
of the seasonal component. Each cycle-
subseries is graphed separately against time.
First the January values are graphed, then
the February values are graphed, and so

forth. The midmean of the values is por-
trayed by the horizontal line and the values
themselves are portrayed by the ends of the
vertical lines emanating from the horizontal
line.

-



12 Journal of Official Statistics

Data
sp 80 1 ?0

40
N

Trend
AR I

50
L

40

30
1

20
N

Seasonal
10

] T LLLLLL

I '|||'||||l I‘|||III|‘ (R '|||I"|‘ |||||~|I lnu || ||||| '| |||u I |"n | |||n ” |||I| I’ |||-| |‘

=S

4
«

15
A

10
1

Remainder
5

¥ g ||.|.|"|||| I"I""I'I""I"lf "I |l ||" | Il’\ |||I ||r||”,|”|’|| ‘I| Ihl“ "|||l|\h [ llll II||||,|. “

T T
1965 1966 1967 1%8 1969 1970 1971 1972 1973 1974 1975 1976 |977 1978 1979

[

-5
h

=
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The second time series is UM16, the frame so that readers can compare our dis-
number of unemployed males aged 16 to 19  cussion with earlier discussions of these data
in the U.S. for each month from January by Hillmer and Tiao (1982), Hillmer (1985),
1965 to August 1979. We used this time and Carlin and Dempster (1989). A decom-

--
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Fig. 6. Cycle-Subseries Plot for U.S. Unemployed Males Ages 16-19. The units on the
vertical scale are tens of thousands.
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position plot is shown in Figure 5 and a 3.2. n,,,, the number of observations per
cycle-subseries plot is shown in Figure 6. seasonal cycle

There is a yearly periodicity so ng, = 12.

The other parameters of the decomposition This parameter arises in an obvious way
are ng = 1, n, =5, ng, = 13, n, = 21, from the application. For example, for the
and n, = 17. two CO, series presented earlier, there is a
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yearly periodicity so n,, = 365 for the daily
data and n,, = 12 for the monthly data. It
is entirely possible that a time series can
have two or more periodic components; for
example, a series measured daily might have
weekly and yearly periodicities. In such
a case one can use STL to successively
estimate the components by proceeding
from the shortest-period component to the
longest-period component, estimating each
component, subtracting it out, and estimat-
ing the next component from the residuals.

3.3. ny,, the number of passes of the inner
loop and n,,,, the number of robustness
iterations

The STL robust estimation is needed when
prior knowledge of the data or diagnos-
tic checking indicates that non-Gaussian
behavior in the time-series leads to extreme,
transient variation. Otherwise we can omit’
the robustness iterations and set n,,= 0; in
this case, there is no outer loop and STL
consists of the inner loop. The monthly
CO, data in Figure 3 show no aberrant
behavior, so n, was taken to be 0. For the
unemployed-males data in Figure 5, how-
ever, the first two May values are outliers, so
the robust STL was used; we will study this
aberrant behavior later.

First, suppose we need no robustness. We
want to choose n, large enough so that the
updating of the trend and seasonal com-
ponents converges. But for reasons that will
be given in Section 4, the convergence is very
fast. In many cases, n;, = 1 is sufficient, but
we recommend 7, = 2 to provide near cer-
tainty of convergence.

Suppose now that we need robustness
iterations. We want to choose n,, large
enough so that the robust estimates of the
trend and seasonal components converge.
In doing this, there are two reasons for
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always taking n; = 1. The first is the
reason given above — convergence of the
inner loop is very rapid. The second has to
do with a general principle of unconstrained
optimization when there are nested iter-
ations; it does not pay to excessively refine
an inner loop to get overall convergence.
With n;, = 1, we have found thatn,, = Sis
a very safe value and that n,, = 10 provides
near certainty of convergence. For the
unemployed-males data, n,, was taken to be
5 and convergence had occurred by the 5th
iteration. However, for the daily CO, data
in Figure 1, convergence was slower and 10
iterations were required.

Of course, one could develop a conver-
gence criterion and stop the iterations when
the criterion is satisfied. In our investigations
we used the following criterion to judge con-
vergence: Suppose UX and U**Y are suc-
cessive iterates of either a trend or seasonal
component, then U® was judged to have
been a converged component if

max |[U® — U*+D)|
v

- < 0.01.
max U — min U®
v v

34. ny,, the smoothing parameter of the
low-pass filter

For reasons given in Section 5, n;, always
can be taken to be equal to the least odd
integer greater than or equal to n,. This
choice of n;,, which contributes to achiev-
ing the goal of preventing the trend and
seasonal components from competing for
the same variation in the data, is used in
all decompositions in this paper. For the
decomposition in Figure 1, n,;, = 365; and
in Figures 3 and 5, n,, = 13.

3.5. ny,, the seasonal smoothing
parameter

As ny, increases, each cycle-subseries becomes

-
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smoother. We will always take n, to be odd.
For reasons given in Section 5, we also want
n, to be at least 7.

The choice of n, determines the variation
in the data that makes up the seasonal com-
ponent; the choice of the appropriate vari-
ation depends critically on the characteristics
of the series. It should be emphasized that
there is an intrinsic ambiguity in the defi-
nition of seasonal variation. The data analyst
defines the seasonal variation in choosing
the seasonal smoothing parameter. We will
describe a diagnostic method that can assist
the data analyst in choosing a definition;
but these methods do not always lead to a
unique choice, and in many applications the
final decision must be based on knowledge
about the mechanism generating the series
and the goals of the analysis. The ambiguity
is true of all seasonal decomposition pro-
cedures, not just STL. A lucid discussion of
this point is given by Carlin and Dempster
(1989).

Figure 7 illustrates a diagnostic graphical
method that can help in the choice of n,.
Each panel of Figure 7 graphs two sets of
values for a particular month. Let §, be the
mean of the values of the cycle-subseries of
the seasonal component for the k-th month.
The curve on the panel for the k-th month
graphs those seasonal values minus their
mean §,. The circles graph the values of the
k-th cycle-subseries of the seasonal plus the
remainder, also with 5, subtracted. (The
reason for subtracting 5, is to center the
values on each panel at zero; note that the
vertical scales of all panels are the same so
that we can graphically compare the vari-
ation of values on different panels.) This
diagnostic method, which we will call a
seasonal-diagnostic plot, helps us decide how
much of the variation in the data other than

trend should go into the seasonal com-
ponent and how much into the remainder.

The values graphed in Figure 7 are from
the decomposition of the monthly CO,
series in Figure 3 where n, = 35. Figure 8
is the seasonal-diagnostic display for a
decomposition of the same series with n
decreased to 11. Each cycle-subseries of the
seasonal component is now much less
smooth. The additional variation in these
seasonal values, compared with the seasonal
values for ny = 35, appears to be noise
and not meaningful seasonal variation
because the cycle in the CO, series is caused
mainly by the seasonal cycle of foliage in the
Northern Hemisphere, and one would expect
a smooth evolution of this cycle over years.

Figure 9 is the seasonal-diagnostic dis-
play for the robust decomposition of the
unemployed-males series shown in Figure 5
where n, = 17. The cycle-subseries of the
seasonal component appear to follow the
patterns in the values of the seasonal plus
remainder without introducing undue noise.
Note that the values of the seasonal com-
ponent for May are nearly linear and follow
the pattern of the majority of the values of
S, + R, without being distorted by the
initial two outliers. This is a result of the
robust estimation. Without the robustness,
the seasonal component is distorted. This is
illustrated by the seasonal-diagnostic dis-
play in Figure 10 for a decomposition that
uses no robustness iterations; the parameters
are n; = 2, n, =0, ny = 13, n, = 21,
and n, = 17. The resulting cycle-subseries
of the seasonal component are- similar to
those for the other decomposition except for
the months of May and June. For May, the
outliers distort the seasonal values; these
values neither account for the outliers nor
follow the pattern of the remaining values.
(N.B. We have taken the position that the
aberrant May behavior is a transient noise
phenomenon. If those with more detailed
knowledge of the mechanism generat‘ing the
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data had a convincing argument that the 3.6. The trend smoothing parameter, n,
behavior is a rapidly evolving seasonal

component, then we would reduce n, to As n, increases, the trend component,
account for it in the seasonal.) T,, extracts less variation from X, and

-
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Fig. 8. Seasonal-Diagnostic Plot for Monthly Carbon Dioxide Data with the Seasonal
Smoothing Parameter Equal to 11. The units on the vertical scales are ppm.

becomes smoother. We will always take n,, component whose estimation is needed to
to be odd. form an estimate of the seasonal; in other

We recommend the following approach  words, regard the primary goal of STL to be
to the trend component. Consider it to be a  the estimation of the seasonal component. If
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a component is needed that describes certain
low-frequency variation in the data, then we
can carry out a post-trend smoothing. This
means that a low pass filter, such as loess, is

applied to T, + R,, the data with the
seasonal component removed, to get a com-
ponent with the desired variation. As we will
see, we often are forced to do this singe our
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choice of n, often is restricted by the needs
of the decomposition and cannot necessarily
be chosen so that the trend component

describes a certain prescribed component of

variation in the data.

There are two roles that the trend com-
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ponent plays in helping to estimate the
seasonal component. One is to remove per-
sistent, long-term variation, such as the
persistent increase in the CO, concentrations
in Figures 1 and 3. If we did not remove such
behavior, it would distort the seasonal
component. (The presence of such behavior
is what prevents us from simply applying
an ordinary digital filter to the data that
passes in bands centered at the fundamental
seasonal frequency and its harmonics.) This
role is achieved unless 7, gets so large that
the smoother misses even persistent effects.

The trend component also plays a role in
the robustness iterations. The robustness
weights, whose purpose is to decrease the
influence of aberrant behavior, are based
on the magnitudes of the remainder com-
ponent. Values of the remainder that are
large in absolute value are given reduced
weight. We do not want to allow major
low-frequency effects to go into the remain-
der because we want to give reduced weight
only to extreme, transient behavior and
not to peaks and troughs of major, slow
oscillations. Thus, for this purpose, we want
n, to be small.

But we cannot allow 7, to become too
small. Having chosen 7y, and thus the
variation that should go into the seasonal
component, we do not want n, so small that
some of this variation winds up in the trend
component. In other words, we do not want
the trend and seasonal components to com-
pete for variation in the data. In Section §
we show that to do this we need to choose
n,, so that

1.5n,

Ry =2 —————.
O — 1.5ng)

(Since ng,, > 7, n, ranges from about 1.5n,
to 2n,.) Thus, all of the above goals for the
trend component are satisfied if we take n,
to be the smallest odd integer satisfying the
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above inequality. This value of n,, was used
for the three examples in this paper. For the
monthly CO, series, n, = 12 and n, was
chosen to be 35; the right side of the inequal-
ity is 18.8, so n, = 19. For the daily CO,
series n, = 365 and ny = 35; the right
side in this case is 572.0, so n, = 573. For
the unemployed-males series, n,) = 12 and
n,, = 17; the right side in this case is 19.7,
so n, = 21.

To assess the trend component that results
from the choice of n, it is helpful to make a
trend-diagnostic plot as shown in Figure 11

for the decomposition of the unemployed-

males data. The circles in the top panel
graph the trend plus remainder, T, + R,
and the superposed curve graphs 7,. The
bottom panel graphs the remainder, R,;
thus the bottom panel is a graph of the
residuals from the curve in the top panel.
The May outliers appear as two large pos-
itive values in the remainder.

4. Computational Methods

There is a general principle about the com-
putation of a loess smoothing that allows
fast computation. Because it is smooth, g(x)
does not need to be computed exactly at all
values of x where we need it, but rather can
be computed exactly at a sufficiently dense
set of points and interpolated everywhere
else. The implementation of this general
principle of computing loess can vary sub-
stantially and depends on the setting in
which loess is applied.

We implemented STL in two ways and
each employed this principle of fast com-
putation of loess, but the details of the two
cases were quite different. One implemen-
tation was in Fortran and the other was in
the S environment for graphics and data
analysis (Becker, Chambers, and Wilks
1988). In the Fortran implementation, there
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are three computation parameters: nfy™,
ng™, and n™. The trend smoothing is
carried out at positions 1, 1 + n{i™,
1 + 2n{™, and so forth, and at position N.
The trend component at other positions is
computed by linear interpolation. A similar
procedure with the parameter nl™ is
used for each loess smoothing in the cycle-
subseries smoothing, and with the parameter
n{™ for the loess smoothing in the low-pass
filter. We have found that taking n;™ to be
the smallest integer greater than or equal to
n,/10 or even n, /5 works quite well. Simi-
lar statements hold for n{i™ and n{;"”. In
the S implementation, each loess smoothing
is carried out by a general-purpose loess
routine where the choice of positions at

which smoothed values are computed exactly
is determined by an algorithm that uses
k — dtrees, and interpolation is carried out
by blending functions; the details of this
procedure are described by Cleveland,
Devlin, and Grosse (1988).

We carried out an analysis of the compu-
tation time of the Fortran implementation.
The Fortran routines were machine-gener-
ated from programs written in Ratfor, a
Fortran preprocessor (Kernighan 1975). No
missing values are allowed because even
greater speed can be achieved. (The S imple-
mentation mentioned above allows for miss-
ing values.) The following function of the
STL parameters provides a reasonable
approximation to the run time:

-=
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h(N, ”(z))

ny(ne + DN [ Gump)
L0)

h(N/n,, ng)
+ )
(s)

h(N, n(,))]

where
hk,1) = ¢ + ¢, min(k, [).

The constants ¢, and ¢, depend on the
machine on which STL is run. For a VAX
8550 with run time measured in milliseconds,
¢, = 0.0635and ¢, = 0.0289. For example,
consider the decomposition of the monthly
CO, data in Section 3 where N = 348,
n, =12, ngy =2, ngy =0, ny =13,
ny =19, and ny = 35. For nf™ = 2,
ndy™ = 4, and n{y™ = 2, the VAX run
time from the formula is 0.52 sec. (The actual
run time is 0.65sec.) For the unemployed-
males decomposition, we have N = 176,
=12, ny =1, n, =35, ny =13,
n, = 21, and ny = 17. For n{i™ = 3,
ng™ = 2, and n{fi™ = 2, the VAX run
time from the formula is 0.73sec. (The
actual run time is 0.88 sec.) The formula, as
in these two examples, underestimates the
actual run time, but its accuracy is quite
sufficient for our purpose: showing, roughly,
the change in run time as we change the
parameters. For example, we can see that if
ndm?, ndm | and n™ are all multiplied by
a factor d, then the run time is approximately
divided by d. The formula also shows that
the run time is proportional to n;,(n,, + 1),
the total number of passes through the inner
loop.

5. Eigenvalue Analysis

The guidance given in the previous sections
about the choices of the smoothing par-
ameters n), n,,, and n, depends critically on
the analysis in this section, which consists of
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a study of the eigenvalues and frequency
response functions of the linear filtering
operations of the inner loop (with no robust-
ness weights). Using the eigenvalues and
frequency response functions we will apply
results of Buja, Hastie, and Tibshirani
(1989) to determine properties of the seasonal
and trend components and the dependence
of these properties on the parameters.

5.1. Operator matrices

Each smoothing step of the STL inner loop
consists of an operation in which an input
time series, w,, is linearly filtered to produce
an output time series, x,; that is,

X, = Y d,w,
u

Thus, if w and x are vectors whose uth
elements are w, and x,, respectively, and D
is a matrix whose (v, u)th element is d,,,
then

x = Dw.

We will refer to D as the operator matrix of
the filter.

Let 7 be the N x N identity matrix, let C
be the (N + 2n,) x N operator matrix of
the cycle-subseries smoothing in Step 2, let
L be the N x (N + 2n,) operator matrix
of the low-pass filter in Step 3, and let P be
an N x (N + 2n,) matrix whose first n,
columns consist of zeros, whose next N rows
are the identity matrix, I, and whose last N
columns consist of zeros. Then the operator
matrix for the seasonal smoothing, which
consists of Steps 2 to 4, is

S = (P - L)C.

Let T be the N x N matrix of the trend
smoothing in Step 6. After the first pass of
the inner loop, the seasonal component is

SY
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and the trend component is
I — S)Y.

Thus the operator matrix for the trend com-
ponent from the first pass is

T, = TU—-S)=T— TS

and the operator matrix for the seasonal
component from the first pass is

S = S

Let T, and S, be the operator matrices for
the kth pass, where k is any positive integer,
and let T, be the zero operator matrix,
that is, with all elements zero. Then

S = SU - T,y)
and
Tk = T(I - Sk)
For example,
S, = S -T)
= S —-TU - 9))
= § — ST + STS
and
T, = T - S,)

= T —TS + TST — TSTS.

Suppose for each positive integer m,

(ST)mIZ
| (ST)™ "2 for m odd

for m even

and
(TS)"? for m even
(@S T for m odd,
then
2k—1
Sk = Z (—l)m‘lAm
m=1

and
2k
T, = Z (- 'B,.
m=1

5.2. Eigenvalues and frequency response
functions

To simplify the ensuing analysis we will
suppose that the time series being decom-
posed, Y,, is circular in the sense that Y, is
defined for all integer » and Y, = Y, if
v = u (mod N). While this is a fiction, it
nevertheless provides a good approximation
if n, and n, are small compared with N and
if n, is small compared with N/n,; in other
words, in this analysis, we ignore end effects.
Also, for notational convenience, we shall
suppose that N is even and equal to 2M
where M is a positive integer.

One result of the circularity assumption is
that the operation associated with any oper-
ator matrix, D, defined in Section 5.1 is a
stationary, symmetric, linear filter. That is,
if w, is the input series of the operation and
X, is the output series of the operation, then

X, = dw,_;
j=-r

whered, = d_;,and Disann x ncirculant

matrix (Grenander and Szego 1958). For

example, for the trend smoothing,
W(jlr)
Y, Wl

i=—r

dj=

where r = (n, — 1)/2 and W is the tricube
weight function.
Let

D*(f) = i d; cos 2mjf

j=_
be the Fourier transform of the filter coef-
ficients d; at frequency f. Let f, = k/N, for
= 0 to M, be the Fourier frequencies.

-
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Since D is a circulant matrix, its eigenvalues
are

d¥ = D*(f,) for k=0 to M,

where the multiplicity of dF for k > 01is 2
and the multiplicity of df is 1. For k > 1,
the cosinusoids at frequency f;, sin (2nvf,)
and cos (2nof,) for v = 1 to N, are eigen-
vectors with eigenvalue d}; the cosine at
frequency f; = 0, cos 2nofy = 1 forv = 1
to N, is an eigenvector with eigenvalue dg.
Following the previous convention, the
Fourier transforms of the STL operators T,
C, L, and S will be denoted by T*, C*, L*,
and S*. Since S = (I — L)C, we have

S*(f) = [1 = L*(NIC*(f).

Furthermore, it is easy to see that for n,, =
ny, T* and C* are related by

CXf) = T*(y /).

L is a low-pass filter so H =1 — L is a
high-pass filter. Let H* be the Fourier trans-
form of H.

Figure 12 shows four frequency response
functions — T*2(f), C**(f), H**(f), and
S*(f) - for the parameter values n,, = 12,
ng = 23,n, = 7, and n, = 13.

5.3. Design goal

Let ¢f and s¥ for kK = 1 to M be the eigen-
values of T and S, respectively. Since
IT*(f) < 1, we have |tf] < 1. However,
we can have |s¥| > 1 because |H*(f)| can
be greater than one; but if n,, n,, and n,
are chosen to satisfy the criteria we will set
out later, then |S*(f)| < 1. Thus, we shall
suppose that |s¥| < 1.

We will now apply general results of Buja,
Hastie, and Tibshirani (1989) on methods
of iterative fitting such as the inner loop
of STL. Because |sf| < 1 and |t}]| < 1,
the updates of the trend and seasonal com-
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ponents in each pass of the inner loop
converge to final trend and seasonal com-
ponents. Let S be the operator matrix of the
final seasonal component and let T be the
operator matrix of the final trend com-
ponent. S and T are also circulant matrices
and thus have the above cosinusoids as
eigenvectors. Let §F be the eigenvalue of §
that corresponds to the cosinusoids of fre-
quency f,, and let ¥ be defined similarly for
T If|s¥| = 1,then|§¥| = land ¥ = 0, s0
all of the variation at frequency f; in the
series being decomposed goes into the final
seasonal component and none into the
trend. This would be true even if |t}]| = 1
because the seasonal operator S is applied
first in the initial pass; but, in fact, our par-
ameter selection will prevent ¥ and s§ from
both being 1. If {#}| = 1 and |s¥| < 1, then
f¥ =1 and § = 0; thus all variation at
frequency f, goes into the final trend com-
ponent. If |¢¥| < 1 and |s§| < 1, then

. se(l = 1f)
§F = ——=
1 — tFsf
and
7* t;ck(l B s;(k)
I

thus variation at frequency f; goes into both
final components, and the relative amounts
are determined by the relative values of s}
and r}.

As we stated in Section 3, we do not want
the trend and seasonal components compet-
ing for variation in the data. In view of the
above results, we avoid competition if we
choose ny,), n,, and n, to satisfy the follow-
ing eigenvalue criterion: |s§¥| and |#f| should
not both be nonnegligible.

Note that if we satisfy the criterion,
we have 5§} ~ sf and ¥ ~ r,. Thus S ~
S, ~ S,and T ~ T, ~ T, which means we
get very rapid convergence, essentially after
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the first pass. This explains the rapid conver-
gence we have observed in the inner loop
and provides support for our recommen-
dations about the choice of n;,. End effects
and persistent, long-term components often
prevent convergence on the very first pass in
actual applications, but two passes almost
always are sufficient.

5.4. The choices of n,, n,,,, and n,

To achieve the eigenvalue criterion set out in
Section 5.3 we will consider the four fre-
quency response functions T*%, C*?, H*?
and $*?. We want to choose n, n,, and n,
so that if S**(f) is not small, then T*2(f) is
small, and if T**(f) is not small, then
S*?(f) is small. Notice that this criterion is
satisfied by the parameter choices for the
example of Figure 12.

The operator T is, in frequency terms,
a low-pass filter; that is, it passes only
cosinusoids with low frequencies. We will
define the critical frequency for T to be the
smallest frequency for which T**(f) = 0.05.
Cosinusoids above this frequency are
reduced to nearly zero. Since 7**( ) depends
on n,, so does the critical frequency, and
a good approximation of the frequency is
Sy = 1.5n3'. In Figure 12, £, is shown by
the vertical line on the graph of T*2(f). We
will also define critical frequencies for
C**(f). As the second panel of Figure 12
illustrates, C**( f) has peaksat f = 0and at
f = n{,) and its harmonics. Starting at any
one of these peak frequencies and moving
left or right we will define a critical fre-
quency to be the first value of f where
C**(f) = 0.05. We need only the smallest
two of these critical frequencies. Since
C*(f) = T*(n,f) for n, = n,, and
since f, = 1.5n,' is a good approximation
of the critical frequency for T*?(f), we have
that good approximations of the two critical
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frequencies for C**(f) are

I — —1,—1
[ = LSngyng,
and
—1 —1
S = m (1 = 15mg)).

In Figure 12, f¢™*” and £ are shown by
the vertical lines on the graph of C**(f).

The purpose of the high-pass filter H is to
remove the power in C**(f) below f{™. If
we did not do this, and took S = C, then
S*2(f) and T**(f) would compete for
variation at low frequencies. On the other
hand, we do not want C**(f) to be affected
for f above f47). That is, we want H to
remove low-frequency power but otherwise
not alter the power at the seasonal frequen-
cies. Thus we want to choose 7, so that the
following criterion is met:

H*(f) 2 0 for f< flm
and

H*(f) ~ 1 for f3> flmo.

We will define three critical frequencies for
H**(f) in the following way: Let f"*” be
the lowest frequency such that H**(f) =
0.05; let /7 be defined by H**(f) = 0.5,
and let £ be the highest frequency such
that |1 — H*?*(f)| = 0.05. In Figure 12,
these three critical frequencies are shown
by the vertical lines on the plot of H**(f).
We can satisfy the above criterion if we
can choose ng, so that fii™* > f4 and
SisreD < f) In other words, the upper
and lower critical frequencies for H*?(f)
must be in the interval formed by the critical
frequencies of C**( f).

The smallest value that n, can take and
still smooth the data is 5. (A value of n,
equal to 1 or 3 results in no smoothing.) In
fact, n, = 5 is a rather small value that
results in very little smoothing and that
would be unlikely to arise in practicg:.. Now
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the smaller n is, the harder it is for H *2( ) By exploring H**(f) we discovered the
to satisfy the above criterion since f4” following two properties: (1) if we choose n;,
decreases and f’*" increases as n, decreases; so that f{ is close to the midpoint,

that is, the specification gets tighter. (2n(,)) ", of f&™ and £, then the above
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criterion for H*?(f) is met or nearly met
provided n, > 7; (2) if we take n, to be the
smallest odd integer greater than or equal to
Ry, fi7 4 is close to (2n,)~". This is the
choice of n;, given in Section 3. The two
properties are demonstrated in Figure 13.
For 14 values of n,,

22+m/2

for m=0 to 13,

Ry =

we computed the three critical frequencies
for H**(f) for the above choice of n,,. The
three frequencies multiplied by n, are
graphed against log, (n,) in Figure 13;
n, fos?” is graphed by the symbol “U”,
ng, fon“ is graphed by the symbol “M;
and n, fii" is graphed by the symbol “L”.
The upper horizontal line shows the value of
e S for ny = 7; this value is

nyn (1 — 1.5/7) = 0.79.

Some of the values of g, fos” are slightly
above the limit, but not by an amount that
seriously jeopardizes the above criterion.
The lower horizontal line shows the value of

(lower) _ . . .
ny foo " for ny = 7; this value is
0.21.

nyni, (1.5/7)

Some of the values are slightly below the
design limit but, again, the deviation is not
serious. The middle horizontal line is the
value

n(,,,(O.SnG,)‘) = 0.5

the target for n, f7““". Except for the two
smallest values of n,, n, fii"“ is quite
close to the target.

Having satisfied the above criterion for
H**(f) we now want to choose n, so that
T**(f) and S*?( ) do not both have non-
trivial values. We can do this by choosing #,,
so that f;, < f4%”. This means that

150, < n, (1 — 1.5,
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or
1.5n,
1 -1 5n(3)
This is the recommendation given for n, in
Section 3.

The criteria for ny, n,, and n, that have
arisen from this analysis are satisfied by the
choices for the example in Figure 12. The
goal of separating the power of $**(f) and
T**(f) has been met. Notice that in this
example, n, = 7, the worst-case value in
terms of the design of H**(f).

Ny =

6. Summary
6.1. The choice of the STL parameters in
practice

STL can be used in practice with most of the
parameters chosen in an automated way. In
the following, which describes this usage, [x]
denotes the smallest integer greater than or
equal to x, and [x],,, denotes the smallest
odd integer greater than or equal to x:

1. ng, arises in an obvious way from the
application.

2. ngy = [n))ous-

3. n,, an odd integer greater than or
equal to 7, is chosen on the basis of
knowledge of the time series and on the
basis of diagnostic methods.

4. ny = [1.5n, /(1 — 1.5/n)]ou-

S. The decision about whether to use
robust estimation or not is based on
knowledge of the series and diagnostic
methods. If robustness is not needed,

use n;, = 2 and n,, = 0. If robustness
is needed, use n;, = 1;n, = Sisasafe
value and n, = 10 provides near

certainty of convergence. Of course, a
convergence criterion such as that in
Section 3.3 can be used and the robust-
ness iterations ended when conver-
gence occurs.

6. For the Fortran implementation of



Cleveland et al.: STL: A Seasonal-Trend Decomposition Procedure Based on Loess 29

Section 4, use nfy"™” = [n,)/10], ;™ =
[n/10], and A" = [n/10]. If com-
putation time is still likely to be too
great, replace the values of 10 by 5.
There are four graphical diagnostic
methods that help the data analyst assess
the adequacy of the choices of points 3, 4,
and 5. They are the decomposition plot, the
cycle-subseries plot, the seasonal-diagnostic
plot, and the trend-diagnostic plot. In some
cases, a seasonal post-smoothing or a trend
post-smoothing is desirable.

6.2. Design criteria

In Section 1 we set out several criteria for
the design of STL - simplicity, straightfor-
ward use, flexibility in the amounts of trend
and seasonal smoothing and in the period of
the seasonal component, allowance for
missing values, robust estimation, easy com-
puter implementation, and fast computation.

Simplicity was achieved by basing STL on
one smoother (loess), by minimizing the
number of smoothing operations in the
inner loop, and by using a straightforward
weighting procedure to achieve robustness.
There are at least two benefits to having
a decomposition procedure with a simple
design. One is easy computer implemen-
tation; for example, the Ratfor implemen-
tation discussed in Section 4 consists of
338 lines of code. A second benefit is that
simplicity of a procedure allows one to
analyze its properties, and an understanding
of properties leads to more informed usage.
For example, we were able to study the
eigenvalue properties of STL in Section 5,
and this led to guidelines for the choices of
the parameters.

Parameter selection for STL is straight-
forward. One can use prescribed values for
ny and n, so that for each application, the
data analyst focuses on two choices: whether

to use robust estimation and the value of the
seasonal smoothing parameter, n,. We
have provided several graphical methods to
help the data analyst make these choices.

The parameters of STL proyide substan-
tial flexibility in its use. The seasonal
smoothing parameter, n,, can vary from
small to large, allowing the data analyst
to accommodate a wide range of seasonal
patterns. Similarly n, and n, can range
from small to large and this allows us to set
them to the prescribed values. Also, n, can
be any integer greater than 1, so STL can
accommodate any number of observations
per seasonal cycle; values of 4, 7, 12, 24, and
365 occur commonly in practice.

Fast computation of STL is possible
because there is a general approach to fast
computation of loess — compute at selected
values and interpolate elsewhere. Accom-
modating missing values is possible because
the loess smoother can be applied to data
with unequally-spaced x values, and because
it can provide a fitted value for any value of
X.

The method used for robustness in STL is
a general one called iterated weighted least-
squares (Andrews 1974). We chose this
method for STL because it has desirable
properties (Andrews et al. 1972) and because
it has been used successfully in practice for
robust estimation in other situations such
as fitting parametric regression models
(Andrews 1974) and the general loess
smoother (Bickel et al. 1989), and also in the
SABL seasonal-trend decomposition pro-
cedure (Cleveland, Devlin, and Terpenning
1982).

6.3. Modifications to STL: Multiplicative
decomposition and components estimated by
regression

Computer programs that implement STL
can typically be easily changed to modify
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the STL procedure or make additions; the
reasons for the ease is the relatively simple
design of STL. For example, it would be
relatively easy to modify the Ratfor pro-
grams described in Section 4 to make STL
a multiplicative rather than an additive
decomposition procedure (Shiskin, Young,
and Musgrave 1967). Also, the estimation of
a component, F,, by regression methods can
be easily inserted into these programs. One
situation where such estimation is import-
ant is aggregated monthly time series that
have a trading-day component (Young
1965). To do this there would be a Step 7
in the inner loop in which the trend and
seasonal are subtracted from Y, and the
regression estimation carried out using the
residuals. Also, the regression component
would be subtracted in Step 1, in Step 5, and
in the computation of the remainder in the
outer loop. As with the trend component, a
starting value of F® = 0 could be used.
If robustness iterations are carried out,
the robustness weights would be used in
the least-squares fitting of the regression
estimation.

6.4. Models and confidence intervals

Suppose the time series being decomposed is
Gaussian and that the data analyst has fitted
a model to the data, say a standard ARIMA
model (Box and Jenkins 1970). Then robust-
ness iterations would not be used and the
STL seasonal component would be a linear
operator S applied to the time series; thus
confidence intervals for the seasonal com-
ponent could be straightforwardly com-
puted. In fact, equipped with a model, one
could predict the series forward and back-
ward and apply STL to a series consisting of
the data and the predicted values; this then
would correspond to an “‘optimal” decom-
position in a sense defined by Pierce (1979).
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In effect, what we would be doing is combin-
ing STL and a standard ARIMA model.
(This has been done for X-11 in well-known
work by Dagum (1978).)

One might legitimately ask the following
question: If we go to the trouble of building
a model for a series, why not develop a
component model for the series (e.g., Hillmer
and Tiao 1982; Carlin and Dempster 1989)
and use the model to derive a decomposition?
There are two reasons for using STL and a
standard model. First, the component
models so far developed usually do not
allow for as flexible a specification of the
seasonal component as STL. (The model of
Carlin and Dempster appears to be one
exception.) Second, developing a standard
time series model and using STL is typically
considerably easier than fitting a component
model. (Fitting the Carlin-Dempster model
is not an exception.)

6.5. X-11

The standard procedure in use today for
decomposing a time series is X-11 (Shiskin,
Young, and Musgrave 1967). This method,
which dates back to the 1950s and 1960s, is
quite interesting from a historical perspec-
tive because it incorporated a number of
innovative statistical ideas that would later
become quite fashionable in other areas of
statistics. One is iterative estimation of the
trend, seasonal, and regression components
(as is done in the inner loop of STL) by
what is now known as the backing-fitting
algorithm. This method is used in projection
pursuit regression (Friedman and Stuetzle
1981), in alternating conditional expectation
(Breiman and Friedman 1985), and in addi-
tive fitting (Hastie and Tibshirani 1986).
The backfitting in X-11 also utilized semi-
parametric modeling, another topic of sub-
stantial current interest in statistics gEng]e,
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Granger, Rice, and Weiss 1986; Green
1985). Of course, much more is now known
about backfitting than at the time of the
development of X-11, and this new know-
ledge has been important for the design of
STL; in particular, the eigenvalue analysis in
Section 5 provides important information
on how to prevent the seasonal and trend
components from competing for the same
variation in the data.

A second innovative methodology of X-11
was robust estimation, which was later
intensively studied in the 1970s (Andrews
et al. 1972; Huber 1977; Mallows 1979).
Again, STL has benefited from this later
work, in particular, in the use of iterated
weighted least-squares for robust estimation.

Despite the impressive innovative work
of X-11, it seems reasonable to think in
terms of replacing it now by more modern
methods. The innovative pieces just cited
are now superseded by the later work. For
example, the new backfitting work has
allowed a scientific design of the inner loop
of STL. (It would be interesting to study X-11
by an eigenvalue analysis such as that in
Section 5 to determine which combinations
of amounts of seasonal and trend smooth-
ing lead to the trend and seasonal com-
ponents competing for the same variation in
the data.) And iterated weighted least-
squares is a more reliable estimation pro-
cedure than the data-modification method
used in X-11. (The X-11 robust estimate of
location uses the sample standard deviation
to determine the data modification; this is a
poor method since the standard deviation
can itself be very adversely affected by
outliers.)

But there are even more serious defects in
X-11. First, it is a very complicated pro-
cedure; this makes it difficult to select
options and makes it difficult to decide how
to modify them when diagnostic checking

reveals problems. Also, the computer rou-
tines that implement X-11 are complex and
difficult to deal with. A second major defect
of X-11 is inflexibility. It cannot handle
missing values (and could not easily be
modified to do so), it allows seasonal
periods of only 4 and 12, and it has only four
levels of seasonal smoothing and three levels
of trend smoothing.

6.6. Software

The Fortran implementation described in
Section 4 is public-domain software that
may be obtained in two ways, electronically
or on a floppy disk. To obtain it electronic-
ally, send the message

send stl from a

to research! netlib on UUCP or to netlib@
research.att.com on INTERNET. The
message is read by a program and the code
is automatically returned. Single-precision
Fortran subroutines for the general loess
smoother can also be obtained by sending
the message

send loess from a

to one of the above addresses. To get
double-precision routines replace “loess” by
“dloess” in the message.

A floppy disk that includes both the loess
and STL programs may be obtained (for a
service charge) by writing to

Wadsworth, Inc.

7625 Empire Drive
Florence, Kentucky 41042
U.S.A.

and asking for lowess/loess/stl, ISBN 0-534-
12756-8.
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Comment

Dennis Trewin'

First, I would like to congratulate the
authors on the paper. Not only does the
paper address the common practical statis-
tical problem of seasonal adjustment with
an innovative approach, but the presen-
tation of the material is excellent. I enjoyed
the paper thoroughly although I wish I

could have experimented with the system

more before preparing this comment.

In Section 1.1, the authors outline criteria
they wanted STL to satisfy. The paper pro-
vides the readers with some confidence that
the system does indeed satisfy these six

! Australian Bureau of Statistics, P.O. Box 10, Bel-
connen, A.C.T. 2616, Australia.
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criteria. I particularly like the flexibility in
specifying the amounts of variation in the
trend and seasonal components - this gives
the experienced seasonal adjuster who has
a good feeling for the data series a very
powerful tool to refine his/her adjustments —
more so than for the X-11 method.

The method also allows some flexibility in
the specification of the number of cycles in
the seasonal component. While this will be
of limited value to government statistical
agencies where most series are monthly or
quarterly, it provides a distinct advantage
over X-11 to those who wish to adjust a
series that is not monthly or quarterly.

By its nature the method is robust to
outliers. This, together with the strong
graphics capabilities, must also make it a

-



