

КОЛЕСНИКОВА ЕЛЕНА АЛЕКСАНДРОВНА

АНТИБИОТИКОРЕЗИСТЕНТНОСТЬ БАКТЕРИЙ РОДОВ *UREAPLASMA* И *MYCOPLASMA*, АССОЦИИРОВАННЫХ С ВОСПАЛИТЕЛЬНЫМИ ЗАБОЛЕВАНИЯМИ УРОГЕНИТАЛЬНОГО TPAKTA

03.02.03-микробиология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата биологических наук

Работа выполнена в Федеральном бюджетном учреждении науки «Нижегородский научно-исследовательский институт эпидемиологии и микробиологии им. академика И.Н. Блохиной» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека.

Научный руководитель:

доктор медицинских наук, профессор

Ефимов Евгений Игоревич

Официальные оппоненты:

Исаева Гузель Шавхатовна - доктор медицинских наук, заведующая кафедрой микробиологии ГБОУ ВПО "Казанский медицинский университет" МЗ РФ, директор ФБУН «Казанский НИИЭМ» Роспотребнадзора

Гординская Наталья Александровна – доктор медицинских наук, главный научный сотрудник НИИ профилактической медицины Университетской клинки ФГБОУ ВО «ПИМУ» Минздрава России.

Ведущая организация:

Федеральное бюджетное учреждение науки «Санкт-Петербургский научноисследовательский институт эпидемиологии и микробиологии им. Пастера» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека

Защита диссертации состоится <u>«21» февраля 2019г</u>. <u>в 13.00</u> часов на заседании диссертационного совета Д 212.081.36 при ФГАОУ ВО «Казанский (Приволжский) федеральный университет» по адресу: 420012, г. Казань, ул. Карла Маркса, 74, ауд. 205

С диссертацией можно ознакомиться в научной библиотеке им. Н.И. Лобачевского Казанского (Приволжского) федерального университета.

Автореферат разослан «16» января 2019 г.

Ученый секретарь диссертационного совета, доктор биологических наук, профессор

3.И. Абрамова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы

Возрастающие темпы роста лекарственной резистентности микроорганизмов, в том числе и урогенитальных микоплазм, являются серьезной проблемой современного здравоохранения. ВОЗ считает решение проблемы антимикробной резистентности одной из первостепенных задач, о свидетельствует «Глобальная стратегия BO3 ПО сдерживанию резистентности к противомикробным препаратам», опубликованная в 2001г. Понимание важности этой проблемы нашло отражение и на государственном Распоряжением Правительства OT 25.09.2017г. РΦ утверждена Стратегия предупреждения распространения антимикробной резистентности в Российской Федерации на период до 2030г., основными изучение которой являются механизмов возникновения задачами резистентности, мониторинг ee распространения, повышение осведомленности населения о рациональном применении противомикробных лекарственных препаратов.

Бактерии родов Mycoplasma и Ureaplasma доминируют в последнее время в этиологии урогенитальных инфекций и характеризуются высоким уровнем генетического полиморфизма, ответственного за формирование антибиотикорезистентности. По данным разных авторов частота выявления M. genitalium, M. hominis, U. urealyticum, и U. parvum варьирует в широких пределах от 2% до 80% в зависимости от нозологической формы заболевания, социального статуса и возраста больного (Савичева М.А., 2010, 2014; Рахматулина М.Р., 2013; Белова А.В., 2014; Фофанова И.Ю., Dhandayuthapani S., 2011; Ekiel A., 2016; Fernandez J., 2016). В литературе многочисленные данные, свидетельствующие урогенитальные микоплазмы могут быть причиной бесплодия у женщин и мужчин, влиять на течение и исход беременности, а также вызывать инфекционные заболевания у новорожденных (Фофанова И.Ю., 2010; Савичева М.А., 2014; Белова А.В., 2014, 2015; Мустафина Л.Р., 2012; Т.Э., 2017; Redelinghuys M.J., 2014; Zeinab Azizmohammadi S., 2015; Beeton M.L., 2016).

В настоящее время проблема сохранения репродуктивного здоровья населения является глобальной и социально значимой. В России и зарубежных странах проводятся исследования, посвященные распространенности антибиотикорезистентных штаммов урогенитальных микоплазм среди различных групп населения. Однако подобные работы ограничиваются небольшой выборкой обследуемых групп, характеристикой общих биологических свойств микоплазм и фенотипических проявлений их устойчивости (Лысенко О.В., 2010; Херувимова Е.С., 2010; Белькова Ю.А., 2011; Андреева И.В., 2012; Руденкова Т.В., 2013; Гусейнадзе М.И., 2014; Байтяков В.В., 2016; William A.A, 2014; Zeng X.Y., 2016). Единичными публикации, посвященные изучению распространенности являются различных генетических детерминант резистентности и молекулярных

механизмов устойчивости M. genitalium, M. hominis, U. urealyticum и U. parvum.

Важно отметить, что в настоящее время, как в Российской Федерации, так и за рубежом имеется существенный недостаток информации о полной последовательности генома штаммов урогенитальных микоплазм, включая детерминанты резистентности и патогенности. В международной базе GenBank/NCBI депонированы полные последовательности генома лишь 12 штаммов *М. hominis*, 14 - *U. urealyticum* и 10 - *U. parvum*, что существенно осложняет изучение их эволюционного разнообразия.

Все вышеперечисленное определяет целесообразность исследований, направленных на изучение молекулярных механизмов устойчивости урогенитальных микоплазм, ассоциированных с инфекциями органов репродукции и мочевыводящих путей.

Цель работы – оценка динамики антибиотикорезистентности урогенитальных микоплазм, циркулирующих среди населения г. Нижнего Новгорода в период с 2006 по 2017гг., характеристика механизмов резистентности с использованием молекулярно-генетических технологий.

Задачи исследования:

- 1. Определить распространенность и фенотип антибиотикорезистентности штаммов *Mycoplasma hominis*, *Ureaplasma spp.*, выделенных в период с 2006 по 2017гг. у женщин и мужчин репродуктивного возраста.
- 2. Провести поиск tetM детерминаты резистентности у изолятов *Mycoplasma hominis* и *Ureaplasma spp*.
- 3. Оценить распространенность мутаций в генах gyrA, gyrB, parC, parE и 23S pPHK штаммов *Mycoplasma genitalium*, *Mycoplasma hominis*, *Ureaplasma urealyticum* и *Ureaplasma parvum*.
- 4. С использованием полногеномного секвенирования определить механизмы резистентности к фторхинолонам и макролидам клинических изолятов *Mycoplasma hominis, Ureaplasma urealyticum* и *Ureaplasma parvum*.
- 5. Провести филогенетический анализ полных нуклеотидных последовательностей генома российских изолятов *Mycoplasma hominis, Ureaplasma urealyticum* и *Ureaplasma parvum*, резистентных к фторхинолонам и макролидам.

Научная новизна

Впервые в условиях промышленного мегаполиса проведено крупномасштабное динамическое исследование антибиотикорезистентности к антибиотикам клинических изолятов микоплазм и уреаплазм, ассоциированных с широким спектром заболеваний органов урогенитального тракта.

Получены новые данные о распространенности *M. hominis, M. genitalium, U. urealyticum и U. parvum*, циркулирующих среди населения Нижнего Новгорода.

Впервые с использованием высокотехнологичных методов, в частности NGS-секвенирования, получена молекулярно-генетическая характеристика

маркеров резистентности к макролидам и фторхинолонам урогенитальных микоплазм.

Впервые в Российской Федерации описаны и охарактеризованы гены, кодирующие белки семейства эффлюксной системы МАТЕ, у клинических изолятов *Mycoplasma hominis*.

Информация о распространенности антибиотикорезистентных штаммов *М. genitalium*, выделенных у женщин и мужчин репродуктивного возраста г. Нижнего Новгорода, впервые размещена в системе мониторинга антибиотикорезистентности Российской Федерации - «AMRmap» (http://map.antibiotic.ru/) и доступна специалистам научных и медицинских организаций.

Полученные нуклеотидные последовательности полного генома российских изолятов *M. hominis* (10), *U. urealyticum* (4) и *U. parvum* (2) депонированы в международной базе данных GenBank/EMBL/DDBJ.

Теоретическая и практическая значимость работы

Новые знания, полученные в результате проведенных исследований, вносят существенный вклад в понимание фундаментальных механизмов формирования антибиотикорезистентности микоплазм и уреаплазм, доминирующих в этиологии инфекций мочеполовой системы и органов репродукции, и могут быть использованы в системе подготовки учащихся медицинских и биологических ВУЗов.

Выявленные мутационные изменения в генах, кодирующих субъединицы топоизомераз (gyrA, gyrB, parC, parE), рибосомные белки L4 и L22, а также белки эффлюксной системы MATE могут служить дополнительными эпидемиологическими маркерами урогенитальных микоплазм.

Результаты выполненного исследования использованы при разработке информационно-методического письма «Новые данные о распространенности и способах детекции генетических детерминант антибактериальной резистентности генитальных микоплазм, ассоциированных с заболеваниями УГТ», методических рекомендаций «Молекулярная диагностика инфекций, вызванных бактериями рода *Мусорlasma*, у детей», ноу — хау «Способ подготовки библиотеки с таргетным обогащением для последующего полногеномного секвенирования образцов ДНК, экстрагированных из культур генитальных микоплазм».

Результаты диссертации используются в работе специалистов гинекологического отделения ГБУЗ НО «Городской клинической больницы №12 Сормовского района г. Нижнего Новгорода» при назначении рациональной антибиотикотерапии воспалительных заболеваний органов урогенитального тракта различной локализации и нарушений функции репродукции, что подтверждено актом внедрения.

Международная база данных GenBank/EMBL/DDBJ пополнена полными нуклеотидными последовательностями геномов 16 российских изолятов урогенитальных микоплазм.

Методология и методы исследования

Методология диссертационной работы заключалась в комплексном подходе к изучению антибиотикорезистетности урогенитальных микоплазм, циркулирующих среди населения репродуктивного возраста г. Нижнего Новгорода. Анализ научной литературы, посвященной тематике исследования, проведен формально-логическими методами. Исследования, направленные на решение поставленных задач, осуществляли общенаучными и специфическими методами. В работе использовали микробиологические, молекулярно-генетические, биоинформационные и статистические методы.

Личный вклад автора.

Представленные в работе экспериментальные данные получены лично либо при его непосредственном участии на всех этапах исследования, включая планирование проведение И экспериментов, статистическую обработку и анализ полученных результатов, оформление и Микробиологические публикацию статей. исследования (индикация, идентификация Mycoplasma hominis, Ureaplasma spp и определение их чувствительности к антибиотикам) выполнены лично автором. Молекулярногенетические исследования (поиск генетических детерминант резистентности к тетрациклинам и эритромицину, полногеномное секвенирование изолятов M. hominis и Ureaplasma spp.) проведены на базе лаборатории метагеномики и молекулярной индикации патогенов (руководитель Бруснигина Н.Ф.) МЕИИН И.Н. Блохиной Нижегородского ИМ. академика непосредственном участии автора. Исследования по изучению механизмов резистентности клинических изолятов M. genitalium к макролидам и фторхинолонам сотрудниками лаборатории выполнены совместно cмолекулярной диагностики НИИ антимикробной химиотерапии (НИИАХ) ФГБОУ ВО «СГМУ» МЗ РФ под руководством Эйдельштейн И.А.

Положения, выносимые на защиту:

- 1. Урогенитальные микоплазмы, выделенные у репродуктивного населения Нижегородского региона в 2006 2017гг., характеризуются устойчивостью к фторхинолонам (95,5% *Ureaplasma spp.* и 41% *M. hominis*) и макролидам (27% *M. hominis* и 11,2% *Ureaplasma spp.*), наиболее часто применяемым в терапии урогенитальных инфекций.
- 2. Устойчивость к фторхинолонам у 50% клинических изолятов микоплазм и уреаплазм обусловлена классическими мутационными изменениями в генах gyrA, parC и parE, у других активным выведением антибиотика из клетки посредством различных эффлюксных систем: ABC и MATE. Гены, кодирующие белки семейства MATE, у российских изолятов *Мусорlasma hominis* описаны впервые.
- 3. Резистентность к макролидам U. $urealyticum\ u\ U$. $parvum\$ обусловлена впервые выявленными мутационными изменениями в рибосомных белках L4 и L22, а также метилированием 23S рРНК посредством erm генов. У клинических изолятов M. hominis, циркулирующих в Нижегородском регионе, резистентность к макролидам связана с наличием нуклеотидной замены цитозина на урацил ($C \rightarrow U$) в позиции 2610 V домена 23S рРНК, а также с

ранее не описанной аминокислотной заменой изолейцина на валин $(I \rightarrow V)$ в 120 позиции рибосомного белка L22.

Апробация результатов

Результаты диссертационной работы были представлены, доложены и Всероссийских международных конференциях: И Всероссийской НПК, посвященной 95 – летию ФБУН НИИЭМ им. академика И.Н. Блохиной «Инновационные технологии в противоэпидемической защите населения» (Нижний Новгород, 2014); XVI Всероссийском научном форуме «Мать и дитя» (Москва, 2015); Всероссийской НПК, посвященной 95-летию со дня рождения академика РАМН И.Н. Блохиной «Современные технологии в эпидемиологическом надзоре за актуальными инфекциями» (Нижний Новгород, 2016); VIII, IX, X Ежегодном Всероссийском Конгрессе по инфекционным болезням с международным участием (Москва, 2016, 2017, 2018); VIII, X Всероссийской научно-практической конференции молодых специалистов Роспотребнадзора «Современные эпидемиологии, микробиологии и гигиены» (Москва, 2016; 2018); XVIII, XIX Международном медицинском форуме «Качество и безопасность оказания медицинской помощи» (Нижний Новгород, 2017; 2018), Окружной НПК эпидемиологов ПФО «Эпидемиологическая безопасность помощи и противоэпидемическое обеспечение населения», Межрегиональной НПК эпидемиологов ПФО «Эпидемиологическая и микробиологическая инфекций характеристика актуальных И технологии управления заболеваемостью населения» (Нижний Новгород, 2018); XXII Нижегородской сессии молодых ученых (Княгинино, 2017); ІХ Всероссийской научнопрактической конференции с международным участием «Молекулярная 2017); Европейском диагностика-2017» (Москва, 28-ом Клинической микробиологии и Инфекционных болезней ECCMID (Мадрид, Испания, 2018).

Исследования осуществлялись В рамках отраслевых научноисследовательских программ «Научные исследования и разработки с целью обеспечения санитарно-эпидемиологического благополучия и снижения инфекционной заболеваемости в Российской Федерации» на 2011-2015гг. и «Проблемно-ориентированные научные исследования области эпидемиологического надзора за инфекционными И паразитарными на 2015-2020гг. (регистрационный - AAAA-A16болезнями» номер 116111610215-2).

Публикации

По теме диссертации опубликовано 14 научных работ, среди которых 4 публикации в рецензируемых журналах, включенных в перечень ВАК для защиты кандидатских и докторских диссертаций, 3 в рецензируемых изданиях, 1 депонированная рукопись в ВИНИТИ РАН и 6 тезисов в материалах Международных и Всероссийских научных конференций.

Структура и объем диссертации

Диссертационная работа изложена на 150 страницах машинописного текста и состоит из введения, одной главы обзора литературы, трех глав собственных

исследований, заключения, практических рекомендаций, выводов, дальнейшей разработки темы перспективных направлений цитируемой литературы. Диссертация иллюстрирована 23 таблицами и 26 Библиографический указатель включает 177 источника литературы (91 – отечественных и 86 зарубежных авторов).

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Материалы и методы. Проведено исследование 77810 образцов клинического материала (соскобов эпителия цервикального канала, уретры и вагины), собранного у женщин и мужчин репродуктивного возраста, обратившихся в медицинские организации с профилактической целью, с признаками воспалительных заболеваний УГТ (уретрит, оофорит, кольпит, вагинит, цервицит, эрозия шейки матки), нарушением репродуктивной функции (бесплодие, ОАГА). В группу сравнения включены образцы клинического материала, полученные от женщин (n=20867) и мужчин не имеющих жалоб на момент обращения профилактические учреждения. Клинические образцы на исследование поступали из медицинских организаций г. Нижнего Новгорода: ГБУЗ НО «Женская консультация №1», «Женская консультация №3» и «Женская консультация №5»; ГБУЗ НО «Родильный дом №1» и «Родильный дом №7»; ГБУЗ НО «Городская клиническая больница № 12»; медицинские центры: «Аист», «Элегра». Отбор и транспортировка материала осуществлялись в соответствии с МУ 4.2.2039-05 «Техника сбора и транспортирования в микробиологические лаборатории» биоматериалов В процедурных консультаций. С целью изучения кабинетах стационаров и женских распространенности M. hominis и Ureaplasma spp. среди населения Нижегородского региона были исследованы 27460 образцов (25241 женщин и 2219 мужчин), M. genitalium - 50350 образцов (49330 женщин и 1020 мужчин). Определена чувствительность 1816 изолятов M. hominis, 48 M. genitalium и 9178 Ureaplasma spp. к антибактериальным препаратам различных групп. Проведено полногеномное секвенирование 16 клинических изолятов M. hominis (10), U.urealyticum (4), U. parvum (2), устойчивых к фторхинолонам и макролидам.

Микробиологические методы исследования. Индикацию, идентификацию, определение клинически значимого титра (концентрация $\geq 10^4 \mathrm{KOE}$) и антибиотикограммы M. hominis и Ureaplasma spp. осуществляли с использованием коммерческих питательных сред «Микоплазма Микротест» 2008/03366) «Уреаплазма Микротест» (ФСР 2008/03367) И производства ЦНИИЭ Роспотребнадзора, Москва. Чувствительность М. hominis определяли к 7 АБП: доксициклину, гентамицину, офлоксацину и ципрофлоксацину, клиндамицину, мидекамицину джозамицину; Ureaplasma spp. к 9 АБП: доксициклину, эритромицину, рокситромицину, кларитромицину, азитромицину, мидекамицину, джозамицину, офлоксацину и ципрофлоксацину методом серийных разведений в жидкой питательной среде в соответствии с методическими указаниями МУК 4.2.1890-04

«Определение чувствительности микроорганизмов к антибактериальным препаратам».

Молекулярно-генетические методы исследования. Выделение очистку ДНК M. genitalium, M. hominis и U. urealyticum, U. parvum проводили сорбционным методом с применением наборов «АмплиПрайм ДНК-сорб-АМ» (ФСР 2012/14204) и «АмплиПрайм ДНК-сорб-В» (ФСР 2012/14019) согласно инструкции производителя (ЦНИИЭ, Москва). Скрининг образцов на наличие ДНК M. genitalium осуществляли с применением коммерческой тест - системы «АмплиСенс® Mycoplasma genitalium-FL» (ФСР 2007/00580), (ЦНИИЭ) с гибридизационно - флуоресцентной детекцией («по конечной точке»). Поиск генетических детерминант резистентности M. hominis u Ureaplasma spp. к тетрациклинам проводили методом классической ПЦР с использованием коммерческой тест-системы «Тетрапол», выявление устойчивости детерминант эритромицину изолятов уреаплазм К осуществляли при помощи коммерческого набора «Эритропол» согласно инструкциям производителя (НПФ «Литех», Москва). Детекцию продуктов амплификации проводили путем горизонтального электрофореза в 1,8% агарозном геле. Визуализацию и учет результатов ПЦР осуществляли с помощью гель-документирующей видеосистемы «Geldoc EZ» и программы Image Lab 5.0 (Bio-Rad).

Наличие мутаций в V домене 23S pPHK и QRDR области генов parC и gyrA, обусловливающих устойчивость штаммов M. genitalium к макролидам и фторхинолонам, определяли с использованием ПЦР-РВ с эффектом гашения флуоресценции зонда праймером согласно протоколу патентообладателя (Романов А.В. с соавт., патент на изобретение РФ от 27.09.2017г. №2646123 «Способ выявления мутаций, приводящих резистентности у Mycoplasma genitalium и Mycoplasma pneumoniae к макролидным антибиотикам»). Секвенирование генов parC и 23S pPHK M. genitalium проводили с помощью генетического анализатора Applied Biosystems 3500 Genetic Analyzer (Life Technologies, США) и набора реактивов BygDye® Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher США), согласно прилагаемым протоколам. Полногеномное секвенирование клинических изолятов M. hominis, U. urealyticum, U.parvum проводили на платформе Illumina - секвенаторе MiSeq (США). Подготовку библиотеки ДНК для секвенирования осуществляли с использованием набора Nextera XT DNA Sample Preparation Kit (Illumina, США), согласно инструкции производителя. Оценку качества подготовленной библиотеки ДНК для секвенирования определяли с использованием флуориметра Qubit и набора Qubit DNA HS Assay Kit (Invitrogen, США), автоматизированной системы капиллярного гель - электрофореза QIAxcel Advanced System и набора реагентов для быстрого разделения фрагментов ДНК «QIAxcel DNA Fast Analysis Kit (3000)» (QIAGEN, Германия). Секвенирование проводили с использованием набора MiSeq reagent kit v2 (Illumina, США) на 500 циклов.

Биоинформационные и статистические методы исследования. Выравнивание и сборку полученных коротких чтений относительно

референс генома осуществляли с использованием встроенного в секвенатор выравнивания обеспечения. программного Для нуклеотидных последовательностей использовали программу Burrows-Wheeler Aligner (BWA). В качестве референса служили полногеномные последовательности штаммов: Mycoplasma hominis ATCC 23114 (номер GenBank FP236530.1), Ureaplasma urealyticum serovar 10 str. ATCC 33699 (номер GenBank NC_011374.1), Ureaplasma parvum serovar 3 str. ATCC 700970 (HOMEP GenBank NC_002162.1). Визуализацию и анализ полученных данных проводили с помощью программного обеспечения UGENE Unipro (Okonechnikov К., 2012). Аннотацию генома проводили с использованием Rapid Annotation using Subsystem Technology (RAST) сервера (http://rast.nmpdr.org/rast.cgi) и NCBI Prokaryotic Genome Annotation Pipeline (www.ncbi.nlm.nih.gov/genome/annotation_prok/). последовательности генов (gyrA, gyrB, parC, parE, 23S pPHK, L4, L22, MATE, ABC) M. hominis, U. urealyticum и U. parvum, проводили с использованием алгоритма BLAST и пакета программ, представленных на сервере NCBI (http://www.ncbi.nlm.nih.gov/blast). Выравнивание последовательностей CLUSTALX 2.0 осуществляли программы c помощью (http://bips.ustrasbg.fr/fr/Documentation/ClustalX/)(Thompson J.D., 1994). Филогенетический анализ нуклеотидных последовательностей полных геномов исследуемых штаммов проводили с использованием web-сервиса REALPHY Online tool версия 1.12 (https://realphy.unibas.ch/fcgi/realphy). Построение филогенетических деревьев осуществляли методом Neighboure joining с использованием программного обеспечения MEGA 7.

Статистическую обработку и анализ данных проводили методами вариационной статистики с определением среднеарифметической величины, показателя средней ошибки среднеарифметической величины (m), и вычислением критерия достоверности (t). Доверительным считали различие между сравниваемыми величинами с уровнем доверительной вероятности 95% и 99%. При этом p<0,05 и p<0,001. Статистический анализ проводили с помощью общепринятых алгоритмов в программах Microsoft office (Excel), пакета статистических программ Statz, Statistica 6,0, Biostat.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Распространенность и клиническая значимость урогенитальных микоплазм, выделенных у женщин и мужчин г. Нижнего Новгорода.

Результаты проведенного исследования свидетельствуют о широком распространении $Ureaplasma\ spp.$ среди взрослого населения крупного промышленного центра. Определено, что частота выявления $Ureaplasma\ spp.$ и $M.\ hominis$ в клинически значимых титрах ($\geq 10^4 \mathrm{KOE}$) у женщин и мужчин с воспалительными заболеваниями УГТ была выше, чем в группах сравнения. Наиболее ярко это выражено при вагините, кольпите, аднексите и эрозии шейки матки у женщин, уретрите у мужчин, что свидетельствует о значении $Ureaplasma\ spp.$ и $M.\ hominis$ в развитии данных форм патологий (Таблица 1, 2).

Таблица 1. Распространение урогенитальных микоплазм у женщин с воспалительными заболеваниями органов урогенитального тракта

Doubling and one partial of the property of the partial partia				
Заболевание	Частота выявления (в %)			
	Ureaplasma spp.	M. hominis	M. genitalium	
Аднексит (n=307)	61,3 ±2,8*	26,8 ±2,5*	0,8±0,5	
Вагинит (n=170)	68,2 ±3,6*	27,6 ±3,4*	0,6±0,5	
Кольпит (n=312)	68 ±2,6*	40,7 ±2,8*	$0,8\pm0,5$	
Цервицит (n=211)	56,2±3,4*	25,3±3,0*	1,4±0,8	
Сальпингит (n=129)	61±4,3*	22,8±3,7*	$0,9\pm0,7$	
Эндометрит (n=149)	51,7±4,1*	31,3±3,8*	$0,6\pm0,6$	
Эрозия шейки матки (n=296)	63,8 ±2,8*	36 ±2,8*	0,5±0,4	
Гр.сравнения(n=20867)	28,3±0,3	7,5±1,2	0,4±0,01	

Примечание: * данные, достоверно различающиеся с группой сравнения, p<0,01.

Таблица 2. Распространение урогенитальных микоплазм у мужчин с воспалительными заболеваниями органов урогенитального тракта

Заболевание	Частота выявления (в %)		
	Ureaplasma spp.	M.hominis	M.genitalium
Уретрит (n=228)	41,7 ±3,2*	21,5 ±2,7*	1,1±0,7
Простатит (n=187)	33,7±3,4*	11,2±2,3*	$0,8\pm0,6$
Гр.сравнения (n=1238)	18,7±1,1	$5,6\pm0,6$	$0,6\pm0,2$

Примечание: * данные, достоверно различающиеся с группой сравнения, p<0,01.

Показатели инфицированности женщин и мужчин *M. genitalium* практически не отличались, и составляли в среднем 1,2% и 1,4% соответственно.

Характеристика антибиотикорезистентности клинических изолятов Ureaplasma spp. и M. hominis

На протяжении всего периода мониторинга (с 2006 по 2017гг.) антибиотикорезистентности зафиксированы высокие показатели частоты выявления устойчивых штаммов *Ureaplasma spp*. (Рисунок 1). Устойчивыми к действию одного и более классов антибактериальных препаратов оказались 85,7% *Ureaplasma spp*.

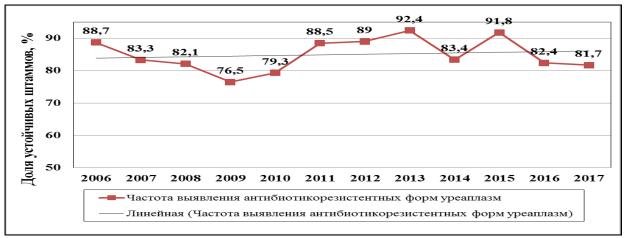


Рисунок 1. Частота выявления антибиотикорезистентных *Ureaplasma spp*. в период с 2006 по 2017гг.

Доля полирезистентных изолятов уреаплазм в течение всего периода наблюдения была невысокой и варьировала от 3% в 2012г. до 14,4% в 2017г., максимальные показатели зарегистрированы в 2006 (29,8%) и 2014гг. (23,1%) (Рисунок 2).

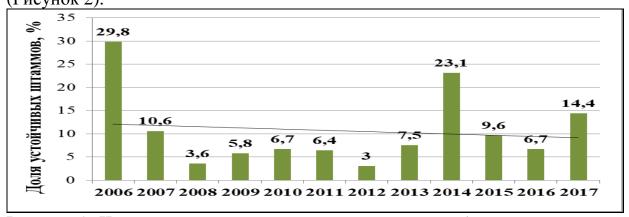


Рисунок 2. Частота выявления полирезистентных *Ureaplasma spp*.в период с 2006 по 2017гг.

На протяжении всего периода наблюдения подавляющее большинство изолятов *Ureaplasma spp*. характеризовалось устойчивостью к препаратам фторхинолонового ряда, а именно к ципрофлоксацину (от 93,3% в 2006г. до 99,8% в 2012г.). Доля офлоксацин-резистентных форм уреаплазм варьировала от 63,7% в 2006г. до 84,6% в 2012г., с 2013г. отмечается снижение этого показателя с 42,7% до 26,4% (2017г.) (Рисунок 3).

Рисунок 3. Доля фторхинолон-резистентных изолятов *Ureaplasma spp.* в период с 2006 по 2017гг.

Установлено, препаратами, эффективно подавляющими рост ЧТО (0.2%)уреаплазм, являются джозамицин устойчивых изолятов), кларитромицин (0,4%), мидекамицин (0,6%), рокситромицин (1,5%) и доксициклин (2,5%). Спектры резистентности *Ureaplasma spp.* отличались 40 разнообразием, выявлено более вариантов комбинаций антибиотикоустойчивости.

Частота выявления устойчивых изолятов *M. hominis* была существенно ниже, чем уреаплазм и составила 10,3%. Подавляющее большинство изолятов *M*. hominis характеризовались монорезистентностью (76,8%). Доля *M*. hominis была высокой составила полирезистентных И 23,2%. Высокоактивным препаратом в отношении *M. hominis* оказался гентамицин (3,6% резистентных изолятов) (Рисунок 4).

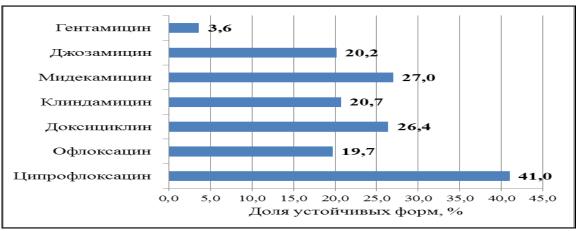


Рисунок 4. Доля устойчивых M. hominis к различным антибиотикам в период с 2006 по 2017гг.

Спектры резистентности M. hominis были менее разнообразными, чем у уреаплазм, выявлено менее 10 вариантов комбинаций устойчивости.

Выявление генетических детерминант резистентности Ureaplasma spp. и M. hominis с использованием метода ПЦР

Один из этапов исследования заключался в определении механизмов резистентности $Ureaplasma\ spp.\ (n=121)$ и $M.\ hominis\ (n=60)$ к тетрациклинам использованием метода классической ПЦР. Установлено широкое распространение tetM детерминанты как у клинических изолятов M. hominis (28%), так и *Ureaplasma spp.* (26%) (Рисунок 5).

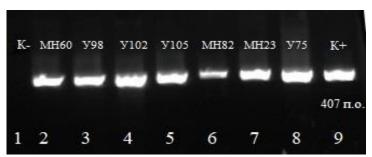


Рисунок 5. Электрофореграмма продуктов выявленной у изолятов *M. hominis*, амплификации участка tetM - детерминанты, треки 3, 4, 5, 8 - положительные выделенной клинических микоплазм и уреаплазм.

К— Примечание: 1 трек отрицательный контроль, 9 трек - К+ -положительный контроль, специфический содержащий фрагмент ДНК длиной 407 п.о. треки 2, 4, 5 – положительные пробы, содержащие специфический фрагмент ДНК tetM детерминанты, изолятов пробы, содержащие специфический фрагмент ДНК tetM детерминанты, выявленной у изолятов уреаплазм.

С целью определения механизма устойчивости изолятов Ureaplasma *spp.* (n=121), имеющих эритромицин-резистентный фенотип, был проведен поиск гена егтВ (Рисунок 6).

Примечание:

содержащий

П.О.

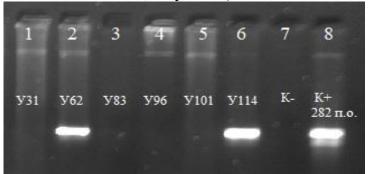


Рисунок 6. Электрофореграмма продуктов ПЦР участка гена егтВ, примере клинических изолятов уреаплазм.

положительные образцы Ureaplasma spp.

трек

отрицательный контроль, трек 8 -

К+ - положительный контроль,

участок ДНК гена ermВ длиной

Треки

отрицательные образцы, треки 2 и

7

специфический

1,3,4,5

К—

Показано, что в % 16 случаев резистентность уреаплазм эритромицину была обусловлена метилированием 23S pPHK посредством гена *егт*В.

Определение устойчивости к макролидам и фторхинолонам M. genitalium с использованием ПЦР-РВ

При оценке устойчивости к макролидам установлено, что два штамма М. genitalium из 48 включенных в исследование в гене 23S рРНК имели точечную замену аденина (A) на гуанин (G) в позиции 2058, другие штаммы (n=46) не имели мутаций в гене 23S pPHK, т.е. имели фенотип «дикого типа».

Эти же штаммы *M. genitalium* были протестированы на наличие устойчивости к препаратам фторхинолонового ряда. У одного штамма M. genitalium была выявлена мутация в QRDR области гена parC, в результате которой произошла аминокислотная замена D84Y, приводящая к нарушению связывания фторхинолонов с топоизомеразой IV.

Изучение молекулярных механизмов резистентности клинических изолятов U. urealyticum, U. parvum и M. hominis с использованием полногеномного секвенирования

С целью определения молекулярных механизмов резистентности M. hominis и $Ureaplasma\ spp$. проведено полногеномное секвенирование 10 клинических изолятов M.hominis, 4 - U.urealyticum, 2 - U.parvum, резистентных к фторхинолонам и макролидам. Большинство изолятов M.hominis обладали устойчивостью к одному из следующих препаратов: офлоксацину, ципрофлоксацину или мидекамицину. Все изоляты уреаплазм, включенные в исследование, характеризовались полирезистентностью.

Обнаружены множественные мутационные изменения в генах gyrA, gyrB, parC и parE исследуемых клинических изолятов M. hominis, U. urealyticum и U. parvum, что свидетельствует о высоком уровне их видового полиморфизма. Установлено, что молекулярными механизмами фторхинолон-резистентности у части исследуемых штаммов M. hominis (4/10) и *U. parvum* (1/2) и *U. urealyticum* (1/4) являются мутационные изменения в «горячих точках» QRDR области генов - gyrA, parC и parE, кодирующих субъединицы топоизомераз. В структуре QRDR области гена gyrA у двух штаммов *М. hominis M45* и *M57* обнаружена мутация, приводящая к аминокислотной замене серина (S) на лейцин (L) в 83 позиции. У двух исследуемых штаммов *М. hominis* MH1002 и MH1866 в гене parC выявлена мутация, приводящая к замене лизина (К) на аргинин (R) в 144 положении. У *U. parvum* 445а выявлена замена серина (S) на лейцин (L) в 83 положении A субъединицы топоизомеразы IV (Рисунок 7).

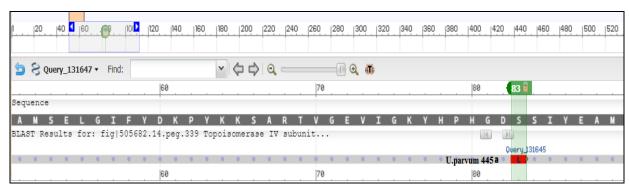


Рисунок 7. Участок A субъединицы топоизомеразы IV клинического изолята U. parvum 445 (выделена аминокислотная замена серина (S) на лейцин (L) в 83 позиции).

В гене рагЕ изолята *U. urealyticum* 1000а установлена мутация, детерминирующая замену аспарагина (N) на аспарагиновую кислоту (D) в 151 положении. Кроме этого, в позициях 145 и 153 также найдены дополнительные, ранее не описанные аминокислотные замены, вероятно, участвующие в процессе формирования фторхинолон-резистентности данного изолята.

В геноме всех исследуемых изолятов микоплазм и уреаплазм обнаружены гены, кодирующие белки семейства АВС транспортеров, роль формировании антибиотикоустойчивости урогенитальных микоплазм экспериментально доказана Raherison S. et all. (2002г.). У половины изученных изолятов микоплазм и уреаплазм устойчивость к фторхинолонам, вероятно, обусловлена активным выведением антибиотика из клетки посредством АВС транспортеров. Кроме АВС – транспортеров в геноме всех исследуемых M. hominis обнаружены гены, кодирующие белки семейства МАТЕ, являющиеся аналогами эффлюксной системы многих бактерий и ответственные за формирование множественной лекарственной устойчивости. Все анализируемые гены, кодирующие белки эффлюксной системы МАТЕ, являются многокомпонентными и содержат в себе неполные гомологичные последовательности двух доменов, таких как суперсемейства -MATE_like superfamily (MATE_like 5, 8, 4, 14, 6, MATE MepA like, MATE yoeA like) и NorM superfamily (vmrA, NorM, matE) (Рисунок 8).

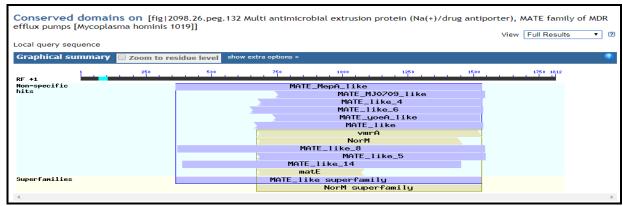


Рисунок 8. Структура генов, кодирующих белки семейства МАТЕ, на примере клинического изолята *M. hominis* 1019.

Сравнительный анализ последовательности генов, кодирующих белки МАТЕ, десяти изолятов *М. hominis* относительно эталонного-штамма (номер GenBank FP236530.1) выявил существенные различия, заключающиеся в количестве нуклеотидных замен (от 30 до 49). В то же время точечные мутации, приводящие к изменению кодонов аминокислот, встречались гораздо реже: от одной у *М. hominis* M45 до четырех у *М. hominis* 1817, *М. hominis* 1019, *М. hominis* M57. Характеристика генов, кодирующих белки семейства эффлюксной системы МАТЕ, у российских изолятов *М. hominis* дана впервые.

С целью определения молекулярного механизма макролидрезистентности клинических изолятов *M. hominis*, *U. urealyticum* и *U. parvum* проведено выравнивание и анализ генов 23S рРНК и генов, кодирующих рибосомные белки L4 и L22. Установлено, что основным молекулярным механизмом устойчивости *M. hominis* к макролидам является структурное изменение в V домене 23S рРНК в результате замены цитозина на урацил в положении 2610. Отмечено, что у изолята *M. hominis* 529, кроме точечных

нуклеотидных замен в 23S рРНК впервые найдены изменения в рибосомном белке L22, а именно замена валина (V) на изолейцин (I) в положении 120 (Рисунок 9).

50S ribosomal protein L22 [Mycoplasma hominis] Sequence ID: gi 502618702 WP_012855569.1 Length: 129 Number of Matches: 1 ▶ See 8 more title(s)							
Range	1: 1 to	o 129 GenPer	t Graph	ics		▼ Next Match	A Previous Match
Score		Ex	pect	Identities	Positives	Gaps	
249 bi	ts(63	6) 1e	-83	128/129(99%)	129/129(100%)	0/129((0%)
MH529 Sbjct		MAKEILÕNSA	AHASVRM	ĞRISPRKARLVADLIR	YKSATQAIVILKHTHKKASI YKSATQAIVILKHTHKKASI YKSATQAIVILKHTHKKASI	EIILKLLNS	
MH529	61				QPHSRGRAYAILKRTSHFFI ÕPHSRGRAYAILKRTSHFFI		
Sbjct	61				ÕPHSRGRAYAILKRTSHFF]		
MH529	121	EEINKKGDK EEINKKGDK	129				
Sbjct	121	EEINKKGDK	129				

Рисунок 9. Выравнивание аминокислотной последовательности белка L22 изолята *M. hominis* 529. Выделена замена I120V.

У исследуемых клинических изолятов *U. urealyticum* и *U. parvum* классических нуклеотидных замен в V домене гена 23S рРНК нами не обнаружено. Устойчивость изученных штаммов *U. urealyticum* и *U. parvum* к макролидам обусловлена впервые описанными мутационными изменениями в генах, кодирующих рибосомные белки L4 и L22 (Таблица 5, 6).

Таблица 5. Аминокислотные замены в белке L4 изолятов *Ureaplasma ssp*.

Изолят	Мутации		
	Нуклеотидные	Аминокислотные замены	
	замены		
U. urealyticum 445	A484C	162 аспарагин(N) - гистидин(H)	
U. parvum 445a	A241G	81 аланин (A) – треонин (T)	
	C480A	160 валин (V) – аланин (A)	
	A484C	162 аспарагин(N) - гистидин(H)	
U. urealyticum 1000	G242C	81 аланин (A) – глицин (G)	
U.urealyticum 1051	C480A	160 валин (V) – аланин (A)	
	A484C	162 аспарагин(N) - гистидин(H)	

Таблица 6. Аминокислотные замены в белке L22 изолятов *Ureaplasma ssp*.

Изолят	Мутации		
	Нуклеотидные	Аминокислотные замены	
	замены		
U. urealyticum 445	G654A	219 валин (V) \rightarrow изолейцин (I)	
U.urealyticum	C394U	132 аланин (A) – валин (V)	
1000a	A406G	136 изолейцин (I) - валин (V)	
<i>U. parvum</i> 1051a	C454U	152 изолейцин (I) - треонин (T)	
	G556A	186 лизин (K) – глут.кис-та (E)	
	A655G	219 изолейцин (I) - валин (V)	
	G773A	258 серин (S) - аспарагин(N)	

С целью определения эволюционного разнообразия антибиотикорезистентных клинических изолятов M. hominis, U. urealyticum и U. parvum, циркулирующих на территории Нижегородского региона, нами был проведен филогенетический анализ полных нуклеотидных последовательностей их генома. Показана генетическая гетерогенность клинических изолятов M. hominis, U. urealyticum и U. parvum.

Определено, что изолят *М. hominis* M45 наиболее отдален от российских изолятов микоплазм и выделен в отдельную филогенетическую ветвь (Рисунок 10). Наибольшая степень гомологии филогенетического родства наблюдается в парах клинических изолятов, образующих друг с другом единые кластеры *М. hominis* 1817 – *М. hominis* 1866 и *М. hominis* 1861 – *М. hominis* 1991. Следует отметить, что изолят *М. hominis* 621 и эталонный штамм *М. hominis strain Н34*, выделенный в России (Гущин А.Е. с соавт., 2017), образуют единый кластер, филогенетически ближе к ним российский изолят *М. hominis strain ТОА*.

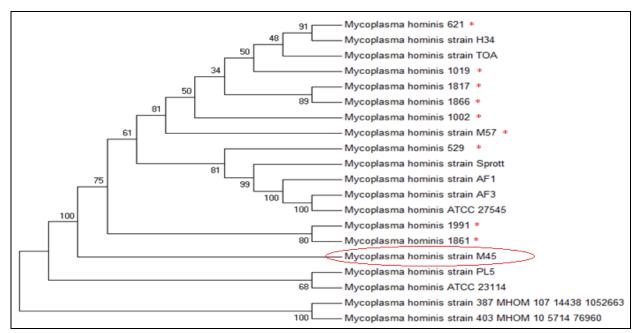


Рисунок 10. Дендрограмма нуклеотидных последовательностей геномов изученных штаммов *M. hominis* и депонированных в базе данных GenBank/NCBI, построенная с использованием метода Neighboure joining. Примечание: цифры в узлах дерева обозначают уровень поддержки, полученный с помощью метода rapid bootstrap.

Филогенетический анализ полных нуклеотидных последовательностей клинических изолятов уреаплазм позволил определить, что исследуемые изоляты *U. parvum* 445a и *U. parvum* 1051a занимают обособленное положение относительно штаммов основной филогенетической группы, геномы которых депонированы в GenBank/NCBI (Рисунок 11).

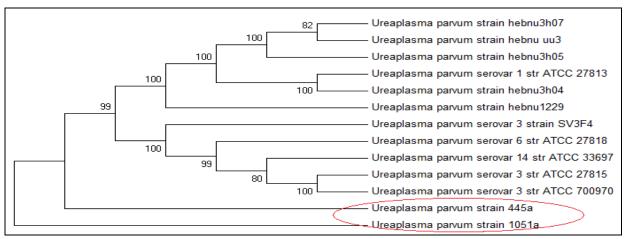


Рисунок 11. Дендрограмма нуклеотидных последовательностей геномов изученных и депонированных в базе данных GenBank/NCBI штаммов U. parvum, построенная с использованием метода Neighboure joining. Примечание: цифры в узлах дерева обозначают уровень поддержки, полученный с помощью метода rapid bootstrap.

Определено, что геномы штаммов *U. urealyticum* 445 и *U. urealyticum* 1051 являются наиболее удаленными от других геномов, депонированных в базе данных GenBank/NCBI, каждый из них занимает отдельную филогенетическую ветвь, изоляты *U. urealyticum* 1000 и *U. urealyticum* 1000а высокогомологичны и располагаются в одном кластере с референс - штаммом *U. urealyticum* serovar 10 str.ATCC 33699 (NC_011374.1), выделенным в США (Shrivastava S. с соавт., в 2008г.) (Рисунок 12).

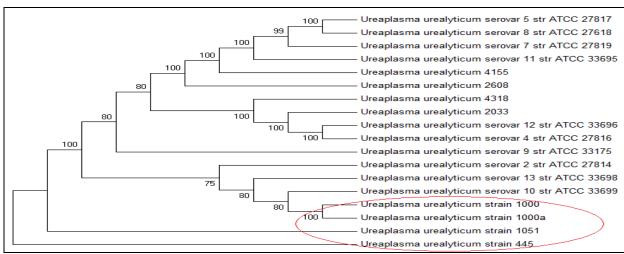


Рисунок 12. Дендрограмма нуклеотидных последовательностей геномов изученных и депонированных в базе данных GenBank/NCBI штаммов *U. urealyticum*, построенная с использованием метода Neighboure joining. Примечание: цифры в узлах дерева обозначают уровень поддержки, полученный с помощью метода rapid bootstrap.

ЗАКЛЮЧЕНИЕ

Впервые в условиях промышленного мегаполиса проведено крупномасштабное динамическое исследование резистентности к антибиотикам клинических изолятов микоплазм и уреаплазм,

ассоциированных с широким спектром заболеваний органов урогенитального тракта. Определены спектры и уровни резистентности Mycoplasma hominis и Ureaplasma антибактериальным ssp. К препаратам, наиболее применяемым в терапии воспалительных заболеваний урогенитального распространение Показано широкое tetM детерминанты резистентности, как у изолятов уреплазм, так и у микоплазм. Установлены молекулярные механизмы устойчивости макролидам основные К фторхинолонам изолятов M. genitalium, M. hominis, U. parvum и urealyticum. На основании биоинформационного анализа последовательностей генома клинических изолятов M. hominis, U. parvum и U. urealyticum выявлены не только известные, но и ранее не описанные мутационные изменения в генах, кодирующих топоизомеразы (ДНК-гираза и топоизомераза IV) и рибосомные белки (L4 и L22). С использованием NGS секвенирования, впервые у российских штаммов M. hominis описаны и охарактеризованы гены, кодирующие белки эффлюксной системы MATE, ответственные формирование множественной лекарственной устойчивости.

Таким образом, полученные результаты исследования, имея прямое отношение к реализации «Стратегии предупреждения распространения антимикробной резистентности на период до 2030 года», утвержденной распоряжением Правительства Российской Федерации, позволили решить её основные задачи, а именно: оценить структуру популяции урогенитальных микоплазм, циркулирующих среди репродуктивного населения Нижегородского региона, установить распространенность полирезистентных штаммов и определить основные механизмы их антибиотикорезистентности.

ВЫВОДЫ

- 1. На основании многолетнего мониторинга антибиотикорезистентности урогенитальных микоплазм, выделенных у женщин и мужчин репродуктивного возраста, показано, что 85,7% уреаплазм и 10,3% *М. hominis* характеризуются устойчивостью к действию одного и более классов антибактериальных препаратов. Установлено, что доля полирезистентных уреаплазм в течение всего периода наблюдения была невысокой и варьировала от 3% в 2012г. до 14,4% в 2017г., максимальные показатели зарегистрированы в 2006г. 29,8%.
- 2. Подавляющее большинство *M. hominis* и *Ureaplasma spp*. обладали устойчивостью к препаратам фторхинолонового ряда, наиболее часто применяемым в терапии воспалительных заболеваний органов мочеполовой системы. Частота обнаружения ципрофлоксацин-устойчивых изолятов уреаплазм варьировала от 93,3% в 2006г. до 99,8% в 2012г.
- 3. Выявлено широкое распространение генетической детерминанты резистентности к тетрациклинам tetM у клинических изолятов M. hominis (28%) и $Ureaplasma\ spp.\ (26\%)$.
- 4. Установлено, что молекулярный механизм резистентности к фторхинолонам у ряда изолятов *M. genitalium*, *M. hominis*, *U. parvum* и *U. urealyticum* связан с мутационными изменениями в QRDR области генов -

- gyrA, parC и parE, кодирующих субъединицы топоизомераз, у 50% микоплазм и уреаплазм с активным выведением антибиотика из клетки посредством ABC транспортеров. Впервые у российских изолятов *M. hominis* охарактеризованы гены, кодирующие белки семейства эффлюксной системы MATE, ответственные за формирование и распространение множественной лекарственной резистентности.
- 5. Молекулярный механизм резистентности к макролидам у подавляющего большинства изолятов *M. hominis* обусловлен заменой цитозина на урацил в позиции 2610 гена 23S pPHK, а также с ранее не описанной аминокислотной заменой в рибосомном белке L22. Макролид-резистентность клинических изолятов *U. urealyticum* и *U. parvum* обусловлена впервые описанными мутационными изменениями в генах, кодирующих рибосомные белки L4 и L22, а также метилированием 23S pPHK посредством *erm* генов.
- 6. На основе филогенетического анализа определена генетическая гетерогенность клинических изолятов *M. hominis* M45, *U. urealyticum* (445, 1051), *U. parvum* (445a, 1051a), выделенных в отдельные филогенетические ветви относительно геномов бактерий, представленных в международной базе данных GenBank/NCBI.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- 1. Информация о спектре и уровне устойчивости урогенитальных микоплазм должна служить основой для выбора рациональной схемы этиотропной терапии урогенитальных инфекций, что позволит снизить риск развития осложнений и будет способствовать сохранению репродуктивного здоровья населения России.
- 2. Для обеспечения сбора данных о биологических свойствах урогенитальных микоплазм, доминирующих в этиологии инфекций мочевыводящих путей и органов репродукции, целесообразно проводить региональный мониторинг их антибиотикоустойчивости.
- 3. Мутационные изменения, выявленные в генах, кодирующих субъединицы топоизомераз (gyrA, gyrB, parC, parE), рибосомные белки L4 и L22, а также белки эффлюксной системы MATE, могут служить дополнительными эпидемиологическими маркерами урогенитальных микоплазм.
- 4. Рекомендуется осуществлять оценку и прогнозирование распространения антибиотикорезистентных штаммов *M. genitalium* с использованием онлайн ресурса системы мониторинга антибиотикорезистентности Российской Федерации «AMRmap» (http://map.antibiotic.ru/).

ПЕРСПЕКТИВЫ ДАЛЬНЕЙШЕЙ РАЗРАБОТКИ ТЕМЫ

Перспективным направлением дальнейших исследований является молекулярно-биологический мониторинг новых резистентных штаммов урогенитальных микоплазм и их генетических вариантов. Необходимо продолжить исследования по определению молекулярных механизмов резистентности клинических изолятов *M. hominis*, *M. genitalium* и *Ureaplasma spp*. к макролидам, фторхинолонам и тетрациклинам. Актуальны исследования, направленные на изучение особенностей структуры генов патогенности урогенитальных микоплазм. В перспективе планируется

создание базы данных полных нуклеотидных последовательностей генома российских изолятов *M. hominis, U. urealyticum* и *U. parvum*, выделенных у женщин и мужчин с различными воспалительными заболеваниями органов мочеполовой системы.

СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ Статьи в научных журналах, включенных в список ВАК:

- **1. Колесникова, Е.А.** Оценка распространенности антибиотикорезистентных штаммов генитальных микоплазм, выделенных у мужчин с воспалительными заболеваниями урогенитального тракта / **Е.А. Колесникова,** Н.Ф. Бруснигина, Е.И. Ефимов // Русский медицинский журнал. Медицинское обозрение. 2018. \mathbb{N}_2 . 2 (I). С. 4 7. (Список ВАК, РИНЦ 0,547, авт. 0,8 п.л.)
- **2. Колесникова, Е.А.** Полногеномное секвенирование штаммов *Мусорlasma hominis*, устойчивых к ципрофлоксацину / **Е.А. Колесникова,** Н.Ф. Бруснигина, М.А. Махова, А.Е. Алексеева // Клиническая микробиология и антимикробная химиотерапия. 2018. Т. 20, № 1. С. 68 72. (Список ВАК, РИНЦ 1,329, авт. 0,8 п.л.)
- **3. Колесникова, Е.А.** Лекарственная устойчивость генитальных микоплазм, ассоциированных с инфекциями мочеполовой системы / **Е.А. Колесникова,** Н.Ф. Бруснигина, Н.Н. Кленина // Инфекционные болезни. 2017. Т. 15, № S1. C. 130. (Список ВАК, РИНЦ 0,422, авт. 0,6 п.л.)
- **4.** Бруснигина, Н.Ф. Мониторинг устойчивости к антибактериальным препаратам *М.hominis* и *U.urealyticum* возбудителей инфекций урогенитального тракта / Н.Ф. Бруснигина, **Е.А. Колесникова,** Е.И. Ефимов, М.А. Махова, О.М. Черневская, К.А. Орлова, Н.Н. Кленина // Инфекционные болезни. 2016. Т. 14, № S1. С. 51 52. (Список ВАК, РИНЦ 0,422, авт. 0,3 п.л.)

Публикации в других журналах и сборниках:

- **1. Колесникова, Е.А.** Молекулярно-биологическая характеристика бактерий родов *Ureaplasma* и *Mycoplasma*, ассоциированных с заболеваниями урогенитального тракта / **Е.А. Колесникова**, Н.Ф. Бруснигина, Е.И. Ефимов // Журнал МедиАль. 2017. № 2 (20). С. 57 64.
- **2. Колесникова, Е.А.** Генетические детерминанты резистентности к антимикробным препаратам и особенности факторов патогенности бактерий родов *Mycoplasma* и *Ureaplasma*, ассоциированных с заболеваниями урогенитального тракта / **Е.А. Колесникова**, Н.Ф. Бруснигина, Е.И. Ефимов // Аналитический обзор. Депонированная рукопись № 107-B2017 от 07.09.2017.
- **3. Колесникова, Е.А.** Результаты многолетнего мониторинга антибиотикорезистентности генитальных микоплазм, выделенных у женщин и мужчин с воспалительными заболеваниями урогенитального тракта / **Е.А. Колесникова**, Н.Ф. Бруснигина, Е.И. Ефимов // В сборнике: Современные технологии в эпидемиологическом надзоре за актуальными инфекциями Материалы Всероссийской научно-практической конференции, посвященной

- 95-летию со дня рождения академика РАМН И.Н. Блохиной. 2016. C. 166 173.
- **4. Колесникова, Е.А.** Мониторинг антибиотикорезистентности *Ureaplasma urealyticum* и *Mycoplasma hominis*, ассоциированных с заболеваниями урогенитального тракта у женщин Нижнего Новгорода / **Е.А. Колесникова**, Н.Ф. Бруснигина // В сборнике: Инновационные технологии в противоэпидемической защите населения Материалы Всероссийской научнопрактической конференции, посвященной 95-летию ФБУН ННИИЭМ им. академика И.Н. Блохиной. ФБУН "Нижегородский НИИ эпидемиологии и микробиологиии им. академика И.Н. Блохиной". 2014. С. 208 213.
- 5. Колесникова, Е.А. Оценка антибактериальной устойчивости бактерий Ureaplasma и Mycoplasma, ассоциированных с заболеваниями молекулярно-генетическая мочеполовой системы, характеристика детерминант резистентности / E.A. Колесникова сборнике: материалы Современные проблемы эпидемиологии и гигиены всероссийской научно-практической конференции молодых ученых и специалистов Роспотребнадзора. - 2016. - С. 106 - 107.
- **6.** Prevalence of macrolide resistance in Mycoplasma genitalium from patients with non-gonococcal urethritis and cervicitis in Russia / I.A. Edelstein, A.V. Romanov, M.V. Edelstein, L.M. Zubareva, N.S. Rudneva, I.V. Borisov, **E.A. Kolesnikova**, L.N. Sukhanova, A.M. Achmedova, R.S. Kozlov // 28th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), 21 24 April 2018, Madrid, Spain. Poster # P1863.
- **7. Колесникова, Е.А.** Механизмы резистентности к фторхинолонам клинических изолятов *Мусорlasma hominis, Ureaplasma urealyticum* и *Ureaplasma parvum* по результатам полногеномного секвенирования / **Е.А. Колесникова**, Н.Ф. Бруснигина, М.А. Махова, А.Е. Алексеева, О.М. Черневская, Н.Н. Барышева, К.А. Орлова // Сб. трудов Международной научно-практической конференции «Молекулярная диагностика 2018» (г. Минск, Беларусь). 2018. С. 62 63.
- **8. Колесникова, Е.А.** Мониторинг фенотипической резистентности урогенитальных микоплазм, выделенных у женщин и мужчин г. Нижнего Новгорода / **Е.А. Колесникова** // В книге: Инфекционные болезни в современном мире: эволюция, текущие и будущие угрозы Материалы X Ежегодного Всероссийского конгресса по инфекционным болезням с международным участием (г.Москва). 2018. С. 107 108.
- **9. Колесникова, Е.А.** Молекулярно-генетическая характеристика клинических изолятов *Mycoplasma hominis*, устойчивых к ципрофлоксацину / **Е.А. Колесникова**, А.Е. Алексеева, М.А. Махова, Н.Ф. Бруснигина, Е.И. Ефимов // Сб. трудов IX Всероссийской научно-практической конференции с международным участием «Молекулярная диагностика 2017» (г.Москва). 2017. С. 285 286.
- **10. Колесникова, Е.А.** Распространенность и антибиотикорезистентность генитальных микоплазм у беременных женщин с отягощенным акушерскогинекологическим анамнезом / **Е.А. Колесникова**, Н.Ф. Бруснигина, Е.И.

Ефимов, О.М. Черневская, К.А. Орлова // Материалы XVI Всероссийского научного форума Мать и дитя (г.Москва). - 2015. - С. 115.

СПИСОК СОКРАЩЕНИЙ

АБП - антибактериальные препараты

ABC –ATP-binding cassette superfamily, эффлюксная система

ВОЗ - всемирная организация здравоохранения

ВЗОМТ – воспалительные заболевания органов малого таза

ДНК – дезоксирибонуклеиновая кислота

ГБУЗ НО – Государственное бюджетное учреждение здравоохранения Нижегородской области

КОЕ - колониеобразующая единица

МПК - минимальная подавляющая концентрация

ПЦР – полимеразная цепная реакция

ПЦР-РВ - полимеразная цепная реакция в режиме реального времени

РНК - рибонуклеиновая кислота

23S рРНК – большая субъединица рибосомальной рибонуклеиновой кислоты

УГТ – урогенитальный тракт

ermB – (erythromycin ribosome methylation) ген, кодирующий фермент метилазу

NGS - Next Generations Sequencing, секвенирование нового поколения

MATE - Multidrug and toxic compound extrusion family, семейство эффлюксных белков

QRDR –Quinolone Resistance-Determining Region - регион, детерминирующий резистентность к фторхинолонам

DOC-доксициклин, GEN-гентамицин, CLM-клиндамицин, OFL-офлоксацин, MED-мидекамицин, JOZ-джозамицин, CIP-ципрофлоксацин

БЛАГОДАРНОСТИ

Автор выражает искреннюю благодарность сотрудникам лаборатории метагеномики и молекулярной индикации патогенов ФБУН ННИИЭМ им. академика И.Н. Блохиной, сотрудникам лаборатории молекулярной диагностики НИИ антимикробной химиотерапии (НИИАХ) Смоленского государственного медицинского университета и ее руководителю - к.б.н. Инне Александровне Эйдельштейн, а также сотрудникам медицинских организаций, принимавшим участие в проведении исследований и внедрении их результатов.

Особую благодарность автор выражает к.м.н., доценту, заведующей лабораторией метагеномики и молекулярной индикации патогенов Бруснигиной Нине Федоровне за всестороннюю поддержку и ценные советы при выполнении и написании работы.

E-mail автора: <u>shmelevael@yandex.ru</u>

Отзывы на автореферат просим высылать по адресу: 420008, Казань, ул.Кремлевская, 18, главное здание Казанского федерального университета, отдел аттестации научно-педагогических кадров, Ученому секретарю Диссертационного совета Д 212.081.36 Абрамовой Зинаиде Ивановне, факс: (843) 238-76-01. E-mail: ziabramova@mail.ru.